
What do you already know?

- How are **error**, **fault**, and **failure** different?
- What's the difference between fail-stop and Byzantine failures?
- How many nodes do you need to have 3-fault tolerance for Byzantine failures?
- What measures to deal with failures do you know?
- What are the ways of achieving service continuity in the presence of attacks?

п	1 10	20
	≋	≋
- E	111	100
- 1		

Availability in the presence of failures FT terminology k fault tolerance two army problem Services continuity and disaster recovery Availability in the presence of attacks Failures vs. attacks Random vs. scale-free networks Internet tolerance to attacks and failures Services continuity and disaster recovery

Fault Types

- Transient: occur once and then disappear
- •Intermittent: occurs, then vanishes, then reappears
- ■Permanent: continues to exist

Availability and Reliability

- •Availability: Probability that a system operates correctly at any given moment and is available to perform its functions
- •Reliability: time period during which a system continues to be available to perform its functions
- Problem: calculate system availability and reliability if it's unavailable for 1 second every hour.

Fault Tolerance

A fault tolerant system can provide its services even in the presence of faults

Classification of Failure Modes

Type of failure	Description A server halts, but is working correctly until it halts		
Crash failure			
Omission failure	A server fails to respond to incoming requests		
Receive omission	A server fails to receive incoming messages		
Send omission	A server fails to send messages		
Timing failure	A server's response lies outside the specified time interval		
Response failure	The server's response is incorrect		
Value failure	The value of the response is wrong		
State transition failure	The server deviates from the correct flow of control		
Arbitrary (a.k.a. Byzantine) failure	A server may produce arbitrary responses at arbitrary times		

Achieving k fault tolerance

A system is k fault tolerant if it can survive faults in k components

silent failure vs. Byzantine failure k+1 2k+1

UBC

Agreement among honest players with unreliable communications: Two-army Problem

Even with nonfaulty processes, agreement even between two processes is not possible in the face of unreliable communications

Agreement among dishonest players with perfect communications: Byzantine Generals Problem

Results:

- 1. In a system with m faulty processes, agreement can be achieved only if 2m+1 correctly functioning processes are present (total 3m+1). (Lamport et al., 1982)
- 2. If messages cannot be guaranteed to be delivered within a known, finite time, no agreement is possible even with one faulty process. (Fischer et al., 1985)

Ways to Deal with Failures

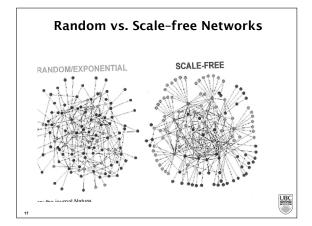
- Service continuity
 - Masking failures via
 - Redundancy of
 - information
 - time
 - physical
- Disaster recovery
 - Backward recovery
 - check pointing
 - Forward recovery
 - bringing system into a correct new state
 - Don't underestimate backups!

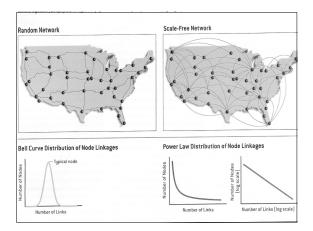
THE UNIVERSITY OF BRITISH COLUMBIA

Availability in the Presence of Attacks

Copyright © 2004-2005 Konstantin Beznosov

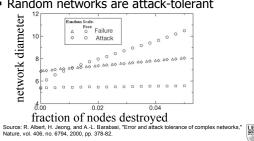
Failures vs. Attacks


Failure


• Random (unintentional) unavailability of participants and/or infrastructure elements

Attack

• Systematic (intentional) unavailability of participants and/or infrastructure elements


UBC

Internet Tolerance to Attacks and Failures

- Scale-free networks are failure-tolerant
- Random networks are attack-tolerant

Ways to Deal with Attacks

- Service continuity
 - Same as for FT, plus
 - Heterogeneity
 - Diversification
 - Avoid monocultures
 - Randomization
 - Avoid "hubs"
- Disaster recovery
 - Same as for FT

Summary

- Availability in the presence of failures
 - FT terminology
 - k fault tolerance
 - two army problem
 - Byzantine Generals problem
 - · Services continuity and disaster recovery
- Availability in the presence of attacks
 - · Failures vs. attacks
 - · Random vs. scale-free networks
 - Internet tolerance to attacks and failures
 - Services continuity and disaster recovery

What did you learn?

- How are **error**, **fault**, and **failure** different?
- What's the difference between fail-stop and Byzantine failures?
- How many nodes do you need to have 3-fault tolerance for Byzantine failures?
- What measures to deal with failures do you know?
- What are the ways of achieving service continuity in the presence of attacks?

Session	11	1:	Security	Рο	licies
---------	----	----	----------	----	--------