
THE UNIVERSITY OF BRITISH COLUMBIA

Availability

EECE 412

Copyright © 2004-2005 Konstantin Beznosov

Where We Are

What do you already know?

- How are error, fault, and failure different?
- What's the difference between fail-stop and Byzantine failures?
- How many nodes do you need to have
 3-fault tolerance for **Byzantine** failures?
- What measures to deal with failures do you know?
- What are the ways of achieving service continuity in the presence of attacks?

Outline

- Availability in the presence of failures
 - FT terminology
 - k fault tolerance
 - two army problem
 - Byzantine Generals problem
 - Services continuity and disaster recovery
- Availability in the presence of attacks
 - Failures vs. attacks
 - Random vs. scale-free networks
 - Internet tolerance to attacks and failures
 - Services continuity and disaster recovery

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

Availability in the Presence of Failures

Copyright © 2004-2005 Konstantin Beznosov

Failures, Errors, and Faults

A system is said to fail when it cannot meet its promises
Error may lead to a fault
Fault -- a cause of an error

Fault Types

Transient: occur once and then disappear

Intermittent: occurs, then vanishes, then reappears

Permanent: continues to exist

Availability and Reliability

•Availability: Probability that a system operates correctly at any given moment and is available to perform its functions

•Reliability: time period during which a system continues to be available to perform its functions

 Problem: calculate system availability and reliability if it's unavailable for 1 second every hour.

Fault Tolerance

A fault tolerant system can provide its services even in the presence of faults

Classification of Failure Modes

Type of failure	Description
Crash failure	A server halts, but is working correctly until it halts
Omission failure Receive omission Send omission	A server fails to respond to incoming requests A server fails to receive incoming messages A server fails to send messages
Timing failure	A server's response lies outside the specified time interval
Response failure Value failure State transition failure	The server's <mark>response is incorrect</mark> The value of the response is wrong The server deviates from the correct flow of control
Arbitrary (a.k.a. Byzantine) failure	A server may produce arbitrary responses at arbitrary times

Achieving k fault tolerance

A system is k fault tolerant if it can survive faults in k components
silent failure vs. Byzantine failure k+1 2k+1

Agreement among honest players with unreliable communications: Two-army Problem

Even with nonfaulty processes, agreement even between two processes is not possible in the face of unreliable communications

Agreement among dishonest players with perfect communications: Byzantine Generals Problem

Results:

1. In a system with *m* faulty processes, agreement can be achieved only if *2m+1* correctly functioning processes are present (total 3m+1). (Lamport et al., 1982)

2. If messages cannot be guaranteed to be delivered within a known, finite time, no agreement is possible even with one faulty process. (Fischer et al., 1985)

Ways to Deal with Failures

Service continuity

- Masking failures via
 - Redundancy of
 - information
 - time
 - physical
- Disaster recovery
 - Backward recovery
 - check pointing
 - Forward recovery
 - bringing system into a correct new state
 - Don't underestimate backups!

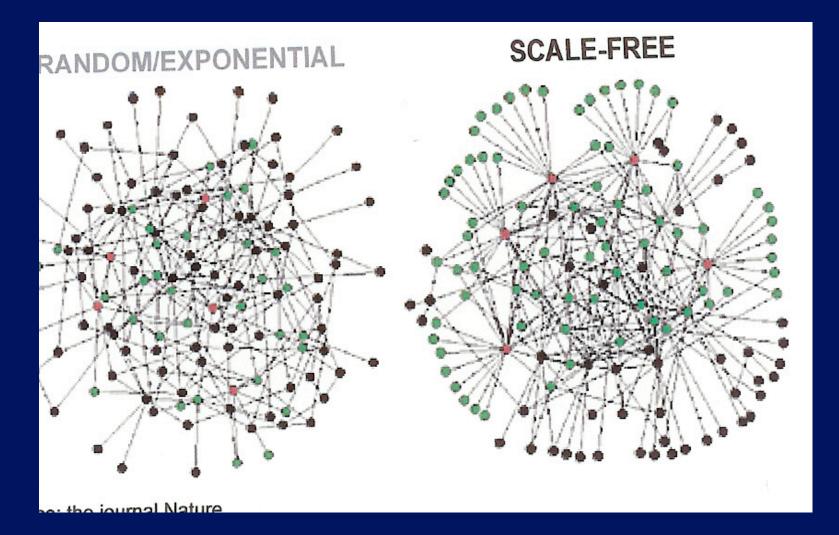
THE UNIVERSITY OF BRITISH COLUMBIA

Availability in the Presence of Attacks

Copyright © 2004-2005 Konstantin Beznosov

Failures vs. Attacks

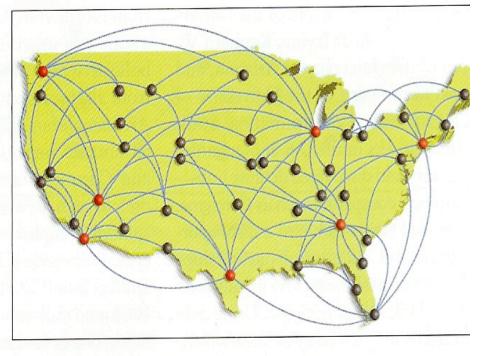
Failure

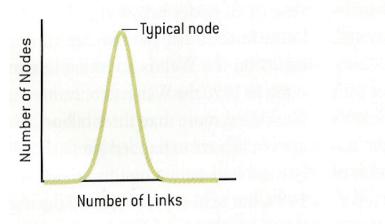

 Random (unintentional) unavailability of participants and/or infrastructure elements

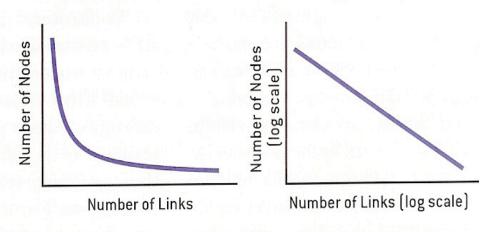
Attack

 Systematic (intentional) unavailability of participants and/or infrastructure elements

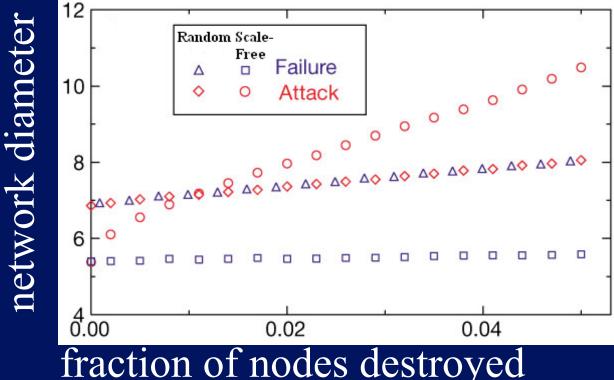
Random vs. Scale-free Networks




Random Network


Scale-Free Network

Bell Curve Distribution of Node Linkages



Power Law Distribution of Node Linkages

Internet Tolerance to Attacks and Failures

- Scale-free networks are failure-tolerant
- Random networks are attack-tolerant

Source: R. Albert, H. Jeong, and A.-L. Barabasi, "Error and attack tolerance of complex networks," Nature, vol. 406, no. 6794, 2000, pp. 378-82.

Ways to Deal with Attacks

Service continuity

- Same as for FT, plus
- Heterogeneity
 - Diversification
 - Avoid monocultures
 - Randomization
 - Avoid "hubs"
- Disaster recovery
 Same as for FT
 - Same as for FT

Summary

- Availability in the presence of failures
 - FT terminology
 - k fault tolerance
 - two army problem
 - Byzantine Generals problem
 - Services continuity and disaster recovery
- Availability in the presence of attacks
 - Failures vs. attacks
 - Random vs. scale-free networks
 - Internet tolerance to attacks and failures
 - Services continuity and disaster recovery

What did you learn?

- How are error, fault, and failure different?
- What's the difference between fail-stop and Byzantine failures?
- How many nodes do you need to have 3-fault tolerance for Byzantine failures?
- What measures to deal with failures do you know?
- What are the ways of achieving service continuity in the presence of attacks?

