
ECE 412 TERM PROJECT 1

iDRM: An Analysis of Digital Rights Management
for the iTunes Music Store

Aaron Franks, Stephen LaRoy, Mike Wood, and Mike Worth

Abstract— Digital rights management (DRM) is necessary to
protect the interests of multimedia copyright holders who sell
digital copies of their works online. In this report we analyze the
design and implementation of FairPlay - Apple’s approach to
DRM. A survey of this system’s weaknesses is presented, along
with the most prevalent attacks that exploit them. We discuss
simple yet effective measures that improve key management and
key distribution protocols to provide much greater protection
against such attacks. We also introduce a watermarking scheme
that acts as a deterrent against large scale piracy - a feature
not present in the current system. The system improvements are
evaluated for efficiency and resilience against attack.

Index Terms— digital rights management, watermarking, ob-
fuscation, iTMS, Apple

I. I NTRODUCTION

T HE need for secure digital rights management (DRM)
is more urgent today than ever before. With the rapid

increase in broadband availability, Internet file sharing has
become a threat to content providers’ bottom line. The Motion
Picture Association of America (MPAA) estimated in 2004
that eDonkey and FastTrack serve a combined five million
users each day [1]. If the average cost of an album is $12.99
with approximately 12 songs per album and if each user
only transfers 1 song a day, the estimated cost to the record
companies is over five million dollars per day.

To combat this trend, content providers have tried a multi-
tiered approach which includes legislation, prosecution and
DRM. Legislation successfully brought down Napster and
Grokster servers. However, the decentralized peer-to-peer
Gnutella system has a rapidly growing user base and a
large database of illegally shared content [24]. The direct
prosecution of individual users has produced mixed results. A
small fraction of existing users abandoned illegal file-sharing
for fear of prosecution, however the total number of users
continues to grow unabated [24].

The inability to legislate the problem away pushed content
providers to consider an alternate approach - to provide a
more convenient online experience for consumers. Purchasing
digital content with a few mouse clicks and offering it at
a lower price than store-bought CDs drastically simplifies
the consumer’s role. Furthermore, the flexibility to purchase
individual tracks from an artist rather than an entire album is
a feature unique to online distribution. However, this content
must be protected by DRM to prevent users from abusing the
system and illegally sharing the purchased media with others.

The most successful of these online content providers is
Apple’s iTunes Music Store (iTMS) which is expected to sell
170 million files this year [2]. Apple uses a digital rights

protection system titled FairPlay to protect content purchased
from iTMS on a per user basis [2]. However, hackers were
able to reverse engineer the FairPlay system and successfully
remove the DRM protection from the audio files. Apple
prosecuted and shut down a handful of web sites hosting these
exploits, but a few remain publicly available.

The rest of this paper is structured as follows. Section
II discusses the design and implementation of the FairPlay
DRM system used in iTunes version 4.x and the weaknesses
exploited by attackers. Section III discusses our improved
design for the DRM system. Section IV discusses social and
legal issues related to DRM, both in general and specifically
with respect to iTMS. Section V discusses related work and
in section VI we conclude.

II. FAIRPLAY

FairPlay-protected content is stored in compressed Ad-
vanced Audio Codec (AAC) files that are encrypted using
the Advanced Encryption Standard (AES). The AES key and
initialization vector are stored in the file’s meta data, but the
key is encrypted with auser keythat is randomly generated
when the audio file is purchased [4]. The user keys are
encrypted with asystem keyand stored in a repository on
the computer or iPod. The iPod is the only portable player
supported by iTMS.

A central policy is to allow a user’s purchased content to
be playable on five computers (Windows or Macintosh only)
at any given time. Apple’s iTMS servers keep a record of the
list of computers that are registered to the account as well
as the user’s keys. When a new computer is registered to a
user account, a machine identifier is uploaded to the iTMS
servers, and all of the user keys are encrypted and stored on
the newly registered machine. Likewise, a computer can be
deregistered by having iTunes delete its key repository and
remove its machine identifier from the iTMS servers [11].
Communication between iTunes processes and iTMS servers
is accomplished using the HTTP protocol.

A. Attacks

There have been several successful attacks on the FairPlay
system. Collaborative reverse engineering efforts produced
PlayFair, which used the definitions for the system key for
the Windows platform and iPod devices. The system key on
Windows was determined to be a hash of registry entries for
the BIOS version, processor name, and Windows version; for
iPods, the system key is simply a hash of the iPod’s hardware
identification code. At the time of writing, the system key

ECE 412 TERM PROJECT 2

definition for Macintosh systems has yet to be determined [4],
[7].

Jon Johansen, widely known for his work in breaking
the content protection scheme used in DVDs, later released
FairKeys and DeDRMS tools. The former masquerades as an
iTunes process to retrieve the user key database directly from
the iTunes server. The latter uses the retrieved key database
to decrypt the protected iTMS audio files [11]. Hymn and
JHymn are related open-source projects that use the same
mechanisms found in the FairKeys and DeDRMS source, that
wrap the DRM removal processes with a front-end GUI [13].
This enabled users unfamiliar with command line applications
to strip DRM protection from their content.

Two other programs, PyMusique and SharpMusique, allow
users to log in to the iTMS and purchase songs without
using iTunes. By subverting iTunes, these programs discovered
that the iTMS server transmits unprotected song files to the
client machine, where DRM protection is added by the iTunes
process. Thus, these programs enable the purchase of music
from the iTMS that is completely free of DRM protection.

B. Analysis of FairPlay Weaknesses

The most obvious weakness in the implementation of any
audio DRM protection scheme is that the user can simply
record the analog playback of the protected content legally
back to his or her computer (dubbed the “analog hole”). The
user is then free to do whatever he or she wishes with the re-
recorded content, while having to accept some audio quality
loss in the re-encoding. A second exploitation of the analog
hole is possible by burning CDs, as FairPlay allows users to
burn protected files to a limited number of playlist CDs. These
can be re-encoded to unprotected audio files through iTunes
or another media player application.

The survey of successful attacks presented above illustrate
several technical weaknesses specific to the FairPlay system
as well. Despite its three layers of encryption, FairPlay was
completely defeated with PlayFair’s discovery of the system
key definitions for Windows systems and iPods. This attack
demonstrated the central importance of the system key in Fair-
Play’s design, and showed that Apple’s attempt at defense in
depth (by layering encryption) did not provide an appreciable
increase in security. The hash used for the Windows platform
is also insecure, as many users will end up with the same
key. Since the hash only incorporates the system BIOS, OS
version, and CPU name, all users with the same combination
of these three system parameters will have the same system
key.

FairKeys exploited weaknesses in the authentication of
iTunes processes. The program uses the device ID of an
iPod connected to the user’s machine, but if no iPod is
available, FairKeys can simply substitute a random value [9].
Furthermore, the only encryption in the authentication of an
iTunes process involves a single HTTP header field. This
field consists of an MD5 hash of the request URL, a static
user agent string, a static base 64 string, and a nonce that is
shipped along with the HTTP request. The use of a standard
hash function with a handful of trivial parameters allows

malicious processes to authenticate as valid iTunes processes
and download an unencrypted user key database. With the key
database, the user is then able to decrypt any file purchased
from the iTMS.

PyMusique and SharpMusique also take advantage of the
weak authentication mechanisms. They further exploit that
DRM protection is added on the client machine and not the
iTMS servers, enabling the direct purchase of unprotected
music.

C. Controversy

The FairPlay DRM system has raised many non-technical
concerns as well, mostly related to the concept of fair use.
Restrictions on user rights, and not piracy, have been cited
as the driving force behind the attacks discussed above [4].
Circumventing the DRM has allowed users to play their legally
purchased content on operating systems, media players, and
mobile devices that are not supported by FairPlay. Fair use has
also continued to be a point of contention for other potential
users, who refuse to purchase any music that contains DRM
because they view it as being too restrictive.

Vendor lock-in is another major issue with FairPlay, since
protected files can only be purchased from Apple’s store
and played from Apple’s media player (iTunes) and portable
devices (iPods). Apple has declined requests from other com-
panies to license FairPlay, and this position has been defended
successfully in court [14]. Furthermore, when RealNetworks
enabled their own protected content to be played on iPods
with their Harmony technology, Apple responded by issuing
firmware updates that changed the way the iPod plays back
protected content, effectively disabling Harmony [11]. The
fact that only Apple products can distribute and play Fair-
Play content has continued to be a major problem for many
other companies that have had difficulty competing with the
hugely popular iPod and iTMS without being able to offer
interoperability.

While these issues result in friction between content
providers and consumers, their solution is beyond the scope
of this paper.

III. IDRM

In this section, we present two orthogonal mechanisms
that improve the security of FairPlay and strengthen the
deterrence of large scale piracy on legally purchased material,
respectively.

A. Key Management

In this section we propose a key generation algorithm to
replace the existing definition of the per-user-device system
key. Our proposed algorithm seeks to increase the effort
required to retrieve this key via brute-force and reverse engi-
neering attacks. We also discuss how authentication processes
and user key distribution improvements better defend against
masquerading attacks such as that of FairKeys.

We note that the requirement to provide offline access to
DRM protected content forces the security of the system to be

ECE 412 TERM PROJECT 3

dependent on the secrecy of the mechanism itself. For offline
access, the client machine must possess all of the information
(code and data) necessary to decrypt and access protected
content. Regardless of how this information is stored, whether
embedded in application(s), encrypted, obfuscated, or even
divided across different physical media, it must all still be
accessible by the client machine to ensure the offline access
requirement. The security of the system then depends on the
client’s ignorance of the mechanism that uses this information
to provide access to the DRM protected content. Thus, the
system cannot exercise the Principle of Open Design [5] and
must rely on the secrecy of the mechanism.

1) System Key Algorithm:The key generation algorithm
requires a larger input space from which to derive the system
key. It must also provide greater variability between the system
keys of different users. These goals are accomplished with the
inclusion of a user-specific random value and the user’s Apple
ID as key generation material. Both the random value and
Apple ID must be stored in plaintext on the client machine,
but this is no different from all other system properties which
must be available in the clear. The guaranteed uniqueness of
an Apple ID across the entire user space combined with the
probabilistic uniqueness of a random value provide sufficient
variability between the key generation input for different users.

Permuting the bits of the key generation material further
strengthens the key’s definition. This requires a random-
looking permutation of the bits that can be computed determin-
istically. This type of pseudo-randomness can be accomplished
using a universal hash function [6]. Such hash functions take
the form

h(x, n) = ((ax + b) mod p) mod n

wherep is a prime,a ∈ Z∗
p, b ∈ Zp and p > n. This class

of hash functions has the property that for anyx, y in the
key space and any randomly chosen functionh ∈ H, the
probability of h(x) = h(y) is 1/n.

We defined the following permutation function to operate
on bytes, whereh is a universal hash function. An important
property of this permutation function is that the original
distribution of bits (the number of zeros and ones) is the same
in the permuted stream as in the input.

BYTE-PERM(bytes, len, h)
n = len * 8
for (int i=0; i < n ; i+=8) do

j = h(i, n)
tmp = bytes[i/8]
bytes[i/8] = CSHIFT(bytes[j/8], j%8)
bytes[j/8] = CSHIFT(tmp, j%8)

Three experiments were performed to evaluate the randomness
introduced with this permutation. Table I shows the distri-
bution of bits of the input, the number of trials for each
experiment, and the expected maximum randomness (chars
are single ASCII characters,ids are hand crafted examples
of key generation input, anddict is the /usr/share/dict/words
file). Each input trial (or file line) was separately permuted
with BYTE-PERMusing two universal hash functions, with
n = 512 andn = 1024. Table II shows the permutation nearly

TABLE I

INPUT USED TO EVALUATE RANDOMNESS

name % zeros % ones trials max % randomness
(pz ∗ 100) (po ∗ 100) (2 ∗ pz ∗ po ∗ 100)

random 50.00 50.00 - 50.00
chars 52.27 47.73 88 49.90
ids 50.37 49.63 5 50.00
dict 47.26 52.74 234937 49.85

TABLE II

BYTE-PERMRANDOMNESS.

chars ids dict
perm (512) 49.72 50.07 46.75
perm (1024) 49.72 49.05 43.58

matches the expected randomness for thechars and ids
experiments and achieves close to the expected value for the
dict experiment.

The deterministic sequence of swapped indices in the per-
mutation algorithm is dependent on the bit length (n). Thus,
key generation input of different lengths will have different
bytes swapped. This introduces further benefit to increasing
the variability of key generation material between users.

The permutation of the input bits serves as the input to a
standard hash function - one of the various SHA flavours.
These functions are part of the Secure Hash Standard as
defined by NIST and provide up to 256 bits of security [8].
Collision resistance and no input inference properties ensure
the permuted input is well disguised from the output, and that
it is nearly impossible for an attacker to find some other input
to produce the same hash.

Code obfuscation is required to mitigate the threat of reverse
engineering techniques that may expose the mechanisms in
place. Since we are particularly concerned with masking the
key generation algorithm, it is most crucial to disrupt the dis-
assembly of the iTunes binaries, rather than the de-compilation
of assembly to a higher level language. Techniques to thwart
static disassembly are proposed in [10], in which inactive
“junk bytes” are strategically placed to introduce errors in the
derivation of assembly instructions from machine code.

2) Performance Analysis:The overhead to include an addi-
tional permutation step in the computation of the system key
is negligible with respect to the total system load. Using the
implementation of SHA-1 in openssl for Max OS X version
10.3.9, we compared the cost of key generation with and
without the byte permutation described above. The code was
written in C and compiled using gcc version 3.3. Each line in
/usr/share/dict/words was used as the key generation
material, which totals to 234,937 trials. Profiling with gprof
indicated that for both runs the SHA-1 routines were the
bottleneck and that the permutation function is less than half
the cost of SHA-1 (see table III for results).

The code obfuscation process was evaluated using the
SPECint95 benchmark and was found to add an average of

TABLE III

EVALUATION OF KEY GENERATION PROCEDURE

function exec time normalized
SHA-1 .895 1.00
BYTE-PERM .447 0.499

ECE 412 TERM PROJECT 4

thirteen percent to the execution time of unobfuscated code
[10]. SPECint95 is a well recognized standard to measure
the performance of CPU bound workloads. As encryption,
decryption and hash function computations are CPU bound
as well, this suggests obfuscated versions of our permutation
are likely to experience an equally minor slowdown.

Lastly, the per-byte cost of SHA-1 and AES are nearly
equal [25]. Thus, the additional overhead incurred by the
key generation algorithm is insignificant compared to the
AES algorithm, which processes megabytes of data in the
decryption of protected content.

3) Authentication and Key Distribution:A challenge-
response protocol will strengthen the authentication of iTunes
clients with the iTMS server. We propose the shared secret
in this protocol be a similar algorithm to the key generation
algorithm described above, requiring a proprietary permutation
followed by a standard hash function computation. Assuming
the code obfuscation is effective in maintaining the secrecy of
this process, this better defends against masquerading attacks
such as FairKeys and PyMusique, as the iTMS server can be
more certain it is communicating with a true iTunes process.

We presume Apple has performed their own internal cost-
benefit analysis with regards to the application of DRM on
the client machine. This analysis likely indicates the cost of
applying DRM at the iTMS servers outweighs the risk of
users illegitimately purchasing unprotected content. Although
our solution does not directly mitigate this risk, stronger
authentication prevents illegitimate processes from gaining
access to the iTMS server.

B. Watermarking

As long as a user has possession of a media file, it will be
nearly impossible to enforce copy protection. Therefore, since
we cannot prevent iTMS content from being copied, we wish
to provide a deterrence from doing so. We propose embedding
an identifying mark into the song to track (and possibly
prosecute) those who violate the iTMS usage agreement by
removing the encryption and distributing copyrighted media
purchased from iTunes. Obviously, this data cannot be stored
in a header or separate data stream or it may easily be removed
[15]. This method emphasizes detection and recovery over
prevention.

Therefore, we propose embedding a watermark into the
audio stream. This watermark consists of a secure modern hash
of the following: iTunes user name, song name, artist name,
download details (time, price, etc.), and a random number to
ensure security. This hash is encrypted using a key belonging
to the iTMS. Once properly decrypted, a court can be certain
that the iTMS music store embedded the watermark and that
the data corresponds to the purchase details of the song. In this
way, a copy of a song can be uniquely identified as belonging
to a particular user. Thus, in the event of large scale piracy,
Apple and only Apple can prove in court that a particular
song was widely distributed by a particular individual. This
enables easier prosecution of file sharers, thereby deterring
unauthorized distribution through anonymous P2P file sharing
networks. The user’s information is never compromised since

the watermark consists of an encrypted hash, and it is only
recoverable by Apple, who already has all their details.

To make this system work, it must satisfy a number of dif-
ficult and sometimes conflicting criteria [20][16][19] [18][17].
The watermark must be

1) embedded in the host media.
2) statistically undetectable. This will prevent unauthorized

detection and removal of the watermark.
3) perceptually inaudible within the host media. Water-

marked and unwatermarked media must be indistin-
guishable to the listener.

4) robust against manipulation and signal processing such
as noise, time scaling, random and fixed length cropping,
compression and decompression, filtering, re-sampling,
D-to-A conversion and format conversion. This will
prevent an attacker from destroying the watermark or
making it unreliable (and therefore legally useless for
prosecution). The watermark must be impossible to
defeat without destroying the audio.

5) readily extracted to completely identify the media pur-
chaser.

There are many schemes that provide protection against
most of the attacks listed above. However, most are not self-
synchronizing, and are not robust against random cropping of
samples in the middle of the song. We identified one method
proposed by IBM researchers that has been demonstrably
resilient against these attacks [18], and is especially suited
for iTMS since it is able to embed the watermark into AAC
compressed media [17], saving much computational resources.

To ensure that the signal is imperceptible, its amplitude
must vary with the input media signal. This imperceptibility
is possible because of masking: the human ear filters sounds
it hears, and certain sounds are masked by other sounds
that are close in frequency and time to the masked sound.
Psycho-acoustic models are used [16][20] to determine the
imperceptibility levels of the watermark signal. The Power
Spectral Density of an imperceptible watermark can be seen
in [20].

We have taken Ryuki et al’s algorithm to embed the
watermark and modified it to meet the needs of the iTMS
watermarking scheme:

• Divide the signals DFT representation (Frequency com-
ponents at different time samples) up into message
blocks.

• Subdivide message blocks into tiles. Each tile is four
AAC frames long. Each time slice has multiple tiles
representing multiple frequency sub-bands. Each tile cor-
responds to a data bit or a synchronization bit for the
watermark.

• Map a pseudo-random array of +1/-1 onto the tiles. The
pseudo-random array is unique to the song, but the same
for every copy of the song sold. This array serves as one
secret key for the watermark.

• Decompose each tile into four frames for each bit, where
the first two frames have one polarity, and the next two
frames have the opposite polarity.

• Calculate the watermark message, and encode it using an

ECE 412 TERM PROJECT 5

Fig. 1. Flow Chart of AAC Watermark Encoding Scheme [21]

error-correcting turbo code.
• Modulate the pseudo-random array bits with sync and

watermark bits, multiplied by the appropriate amplitude
as determined by the psycho-acoustic model of sound
masking. This determines the degree of modification for
the DCT coefficients.1To avoid clicking sounds at the
borders of frames, the watermark signal is multiplied by
a windowing function and overlapped with neighbouring
frames.

• Change the Modified Discrete Cosine Transform coeffi-
cients by the amount determined in the previous step.

• The watermarking process is repeated for multiple blocks
in the file for redundancy.

This is shown in Figure 1. Note that in the AAC file, the
DFT and windowing has already been performed.

In detection, the pseudo-random array used for the embed-
ding is multiplied with the normalized frequency components
from each AAC frame, and the watermark vector of bits is
detected. Bit decisions are made by comparing the vector with
thresholds [21].

1) Analysis of Watermarking Scheme:Obviously, a great
deal of detail in the chosen watermarking scheme has been
omitted. Much more can be found here [18][17][21] [22].

Although the proposed watermarking scheme meets our
requirements for undetectibility and robustness against attack,
it may be replaced at any time by a superior algorithm. This
is useful if a successful attack against this watermarking tech-
nique is found. However, since the playability of a media file
is never noticeably affected by the watermark, the watermark
scheme can be updated, since its use is to detect piracy, not
thwart it.

The watermarking scheme is better than a copy-protection
scheme in that the keys (the pseudo-random array and the key

1Computing the psycho-acoustic model is costly and may need to be done
in the time domain, which negates the advantage of this method that saved
computation by doing the watermarking directly in the compressed AAC file.

used to sign the hash) used to encrypt the data are never in the
hands of the end users. Even if the users did manage to find
out the pseudo-random array, the signed watermark remains
secure. However, all watermarking schemes are vulnerable to
arbitrary large collusion attacks [19], i.e. many users share
their copies of the song, average out the differences and
remove the watermark.

This scheme is robust against a variety of signal trans-
formations: echo, pitch shifting, conversions between formats
(eg. MiniDisc, MP3), D/A and A/D conversion, stretching and
cropping, and random noise [18]. There are also other detector
methods used to improve robustness against stretching [22].

Even in the presence of malicious tampering with the file
causing bit errors in the watermark signal, the turbo codes
and redundancy ensure that the message will almost always
be reconstructed in the presence of attacks that do not render
the file unbearable to listen to. Most attacks that remove
the watermark will distort the audio too much and not be
successful. However, there is still a finite probability that even
an uninformed attack can remove the watermark successfully
[19]. Moreover, the attacker has no way of determining success
since he has no access to the original watermark message or
the pseudo-random array.

False positives (detecting a watermark that isn’t there) are
extremely unlikely in our system because the detector relies
on both the original content and the pseudo-random array.

In the language of secure design principles, watermarking
does not address Least Privilege, Fail-Safe Defaults, Com-
plete Mediation, Defense in Depth or Separation of Privilege,
since watermarking does not attempt to enforce usage rights.
However, it is psychologically acceptable because it is imper-
ceptible and does not expose user’s personal information. It
is an open design in that the watermarking method may be
published, and security depends on keys and random numbers
unknown to users. There is no common mechanism since the
decoders are not included in the iTunes program, so they
cannot be compromised. This system allows us to continually
question our assumptions about what kinds of watermarking
may be broken, and it is easy to upgrade the iTMS to introduce
new, more robust watermarks as they are developed.

IV. L EGAL ISSUESSURROUNDING ITMS

The laws regarding digital media lack specificity, leaving
open the interpretation of legal versus illegal actions with
respect to the control and/or use of digital content. The Digital
Millennium Copyright Act (DMCA) in the United States
(US) seeks to protect the interests of content distributors,
rendering illegal even the attempt to compromise protection
mechanisms [3]. Unfortunately, this legislation is so broad that
it is argued that it impedes research and stifles new innovations
[3]. Moreover, it infringes upon consumer rights as set out in
the Fair Use doctrine. Fair Use in the US dictates that legally
purchased media may be used for research, teaching (with the
exception of distance education), criticism, review or news
reporting [3]. It also permits the resale of purchased media and
the creation of backups for personal use. However, Fair Use
also suffers from an imprecise definition, forcing the balance

ECE 412 TERM PROJECT 6

of power between DMCA and Fair Use to be determined on
a case-by-case basis in court.

The limitations imposed by FairPlay fail to meet the require-
ments of the Fair Use doctrine in US copyright law. For this
reason, many users feel justified in circumventing the copy
restrictions imposed by the iTMS [4]. Apple’s legal team suc-
cessfully forced the removal of PlayFair and associated DRM
removal software from their host web sites [11], through cease
and desist orders referencing DMCA legislation. By making
the system less susceptible to attacks, our improvement to
strengthen key management only maintains the tension in the
debate: making it more difficult to remove the DRM protection
simultaneously improves copyright protection and reduces the
ability of the user to use his purchased media according to his
Fair Use rights.

Another consumer issue regarding DRM is that of privacy
and anonymity. By requiring the user to sign into a service
before listening to audio, it is possible to monitor a user’s
consumption preferences and build a profile of his or her
activities [3]. This is a common point made by civil rights
groups against the implementation of DRM technology.

Our implementation of watermarking does not affect privacy
since the watermarks are only read by Apple from files that are
shared on P2P networks. Moreover, since Apple is the only one
with the pseudo-random array, encryption key, hash function
and input information, no one can extract user details from the
watermark. Also, play counts and other user information are
not tracked using the watermark, since a watermark decoder
is not included in the iTunes player.

V. RELATED WORK

TiVo, a producer of digital television recording systems and
equipment, are incorporating a similar watermarking technique
for programs destined for iPod or PSP devices [23]. This
feature is currently in a trial stage with a select group of TiVo
subscribers, with production implementation expected early
next year.

The release of iTunes version 6 in October 2005 includes an
improved (or modified) implementation for FairPlay. This has
rendered many of the DRM circumvention programs useless
for more recent versions of iTunes. The JHymn web site notes
that the program will not work with iTunes versions 6.0 or
later, since the program has yet to “learn how to perform the
iTunes 6.0 protocol.” [12] We speculate the plethora of attacks
on FairPlay motivated Apple to strengthen the system in ways
similar to those presented in this paper.

VI. CONCLUSION

The protection of digital content to prevent and deter
large scale piracy is a necessity, especially with the growing
ubiquity of digital media players and devices. Apple’s initial
protection mechanisms in FairPlay suffered from considerable
weaknesses, leaving the content vulnerable to the removal of
protection information.

Providing users with offline access to DRM protected
content necessitates the secrecy of the mechanisms used to
uncover the protected media. Several attacks took advantage

of blatant security flaws in the design of Apple’s FairPlay
DRM system. Key generation and key management protocols
can easily and effectively be hardened using proprietary per-
mutation routines in conjunction with standard cryptographic
algorithms to thwart such attacks. Watermarking songs with
the purchaser’s identity using a tamper-resistant scheme pro-
vides a psychological barrier against widespread piracy.

REFERENCES

[1] MPAA. “Illegal Downloading”.
http://www.mpaa.org/CurrentReleases/200411 04 Statistics.pdf

[2] Gibson, Brad. “TMO Reports - Analysts See 3.3 Million iTMS Sales
As Download Explosion”.
http://www.macobserver.com/article/2004/05/05.13.shtml

[3] Liu, Qiong. Safavi-Naini, Reihaneh. Sheppard, Nicholas Paul. “Digital
Rights Management for Content Distribution”.
Univeristy of Wollongong.page 8.

[4] Anonymous. “Hymn Manual”.
http://hymn-project.org/docs/hymn-manual.pdf

[5] Bishop, Matt. “Introduction to Computer Security”.
Pearson Education, Inc. December 2004.pages 204.

[6] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein,
Clifford. “Introduction to Algorithms”.
MIT Press 2002.

[7] Fisher, Ken. “Apple’s FairPlay DRM cracked”.
http://arstechnica.com/news/posts/1081206124.html

[8] NIST. “FIPS 180-2: Secure Hash Standard”.
August 1 2002.http://csrc.nist.gov/publications/fips/index.html

[9] Johanson, Jon L. “FairKeys”. C-Sharp program.
http://www.nanocrew.net/Accessed on: Oct 4th, 2005.

[10] Linn, Cullen. Debray, Saumya. “Obfuscation of Executable Code to
Improve Resistance to Static Disassembly”. CCS’03, October 27-31,
2003.

[11] Anonymous. “FairPlay”.
http://en.wikipedia.org/wiki/FairPlay

[12] Anonymous. “JHymn Info and Help”.
http://hymn-project.org/jhymndoc/

[13] Anonymous. “JHymn - Frequently Asked Questions”.
http://hymn-project.org/jhymndoc/jhymnfaq.php

[14] Betteridge, Ian. “Court Won’t Force Apple to License DRM”.
http://www.eweek.com/article2/0,1759,1725747,00.asp?kc=EWRSS03119TX1K0000594
November 12, 2004

[15] L. Boney, A. Tewfik, K HJamdy. “Digital Watermarks for Audio
Signals”.
Proceedings of the Third IEEE International Conference on Multimedia
Computing and Systems, 1996.

[16] M. Swanson, B. Zhu, A. Tewfik, L. Boney. “Robust audio watermarking
using perceptual masking”.
Signal Processing 66(1998) 337-355

[17] Ryukia Tachibana. “Two-Dimensional Audio Watermark for MPEG
AAC Audio”.
SPIE-IS&T, Vol. 5306, 2004

[18] R. Tachibana, S. Shimizu, S. Kobayashi, T. Nakamura. “An audio
watermarking method using a two-dimensional pseudo-random array”.
Signal Processing 82(2002), 1455-1569

[19] R. Sion, M. Atallah. “Attacking Digital Watermarks”.
SPIE-IS&T, Vol 5306, 2004

[20] P. Bassia, I. Pitas, N. Nikolaidis. “Robust Audio Watermarking in the
Time Domain”.
IEEE Transactions on Multimedia, Vol 3, No. 2, 2001

[21] T. Nakamura, R. Tachibana, S. Kobayashi. “Statistical Model and
Experiment of Reliability in Detecting Multi-bit Watermark”.
IBM Research Report,http://www.trl.ibm.com/people/taiga/pdf/RT0367.pdf

[22] R. Tachibana. “Improving Audiowatermark Robustness Using Stretched
Patterns Against Geometric Distortion”.
Proc. of the 3rd IEEE Pacific-Rim Conference on Multimedia
(PCM2002), pp. 647-654

[23] “TiVo To Bring TV Programming To Apple Video iPodTMand PSPTM ”.
http://www.tivo.com/cmsstatic/press66.html

[24] Mennecke, Thomas. “Media Metrix Depicts Rapid Kazaa Decline”.
http://www.slyck.com/news.php?story=729

[25] Heinlein, Paul. “OpenSSL Command-Line HOWTO”.
http://madboa.comNovember 23, 2005.

