

Processes to Produce Secure
Software

Towards more Secure Software

Volume I

Software Process Subgroup of the Task
Force on Security across the Software
Development Lifecycle

National Cyber Security Summit

March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

Processes to Produce Secure
Software

Towards more Secure Software

Volume I

Software Process Subgroup of the Task Force on
Security across the Software Development Lifecycle

National Cyber Security Summit

March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

Copyright © 2004 Noopur Davis, Michael Howard, Watts Humphrey, Gary McGraw,
Samuel T. Redwine, Jr., Gerlinde Zibulski, Caroline Graettinger

Each copyright holder shall be deemed to have full non-exclusive rights.

Permission is granted for free usage of all or portions of this document including for
derived works provided proper acknowledgement is given and notice of its copyright is
included.

NO WARRANTY

THIS MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. THE EDITORS,
AUTHORS, CONTRIBUTORS, COPYRIGHT HOLDERS, MEMBERS OF CYBER
SECURITY SUMMIT SECURITY ACROSS THE SOFTWARE DEVELOPMENT
LIFECYCLE TASK FORCE, THEIR EMPLOYERS, THE CYBER SECURITY
SUMMIT SPONSORING ORGANIZATIONS, ALL OTHER ENTITIES
ASSOCIATED WITH REPORT, AND ENTITIES AND PRODUCTS MENTIONED
WITHIN THE REPORT MAKE NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. NO WARRANTY OF ANY KIND IS MADE WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of
the trademark holder.

Foreword
The Software Process Subgroup within the Task Force on Security across the Software
Development Lifecycle of the National Cyber Security Summit – Co-Chaired by Sam
Redwine (JMU), Geoff Shively (PivX), and Gerlinde Zibulski (SAP) – produced this
report. The Task Force and its Subgroups were established December 2-3 in Santa Clara,
California at the National Cyber Security Summit sponsored by the Department of
Homeland Security (DHS) and several industry groups – Business Software Alliance,
Information Technology Association of America, Tech Net, and US Chamber of
Commerce. The three-month effort to produce this report, spanning December 2003
through February 2004, is part of the DHS-private sector partnership. The Subgroup’s life
should extend beyond the production of this report, but its specific activities may vary.

Editors:

Samuel T. Redwine, Jr.
Noopur Davis

Authors:

Noopur Davis
Michael Howard
Watts Humphrey
Gary McGraw
Sam Redwine
Gerlinde Zibulski
Caroline Graettinger

Additional contributors included Roderick Chapman and Anthony Hall (Praxis Critical
Systems), Joe Jarzombek Office of the Assistant Secretary of Defense (Networks and
Information Integration), Richard C. Linger (Software Engineering Institute), Peter
Neumann (SRI), and Stacy J. Prowell (University of Tennessee). Papers prepared for the
Subgroup appear in VolumeII.

The editors want to thank task force members, particularly their co-authors, for the many
review comments received and the helpful issue discussions that occurred. In part, Sam
Redwine’s work was supported by Virginia’s Commonwealth Technology Research
Fund and the NIST’s Critical Infrastructure Protection Project through the Institute for
Infrastructure and Information Assurance (3IA) at James Madison University.

Special thanks go to Ron Moritiz (Computer Associates) and Philip Reitinger (Microsoft)
for participating in early teleconferences, Cindy Gagliano (Booz Allen Hamilton) and
Plonk Audrey (US CERT) for their administrative help, Jim Kohlenberger (Business
Software Alliance) for his leadership and administrative help, and to Caroline Graettinger
(Software Engineering Institute) for the section on Organizational Change.

Software Process Subgroup membership:

Leslie Beach – SRA International
Noopur Davis – Software Engineering Institute
Kenneth Dill – PivX Solutions

 i

Dana Foat – OSD(NII) DIAP Defense-wide Information Assurance Program
Richard George – National Security Agency
Kwang Ho Kim – AlphaInsight Corporation
Michael Howard – Microsoft
John Hudepohl – Nortel Networks
Watts Humphrey – Software Engineering Institute
Joe Jarzombek – Office of the Assistant Secretary of Defense (Networks and

Information Integration)
Lalita J. Jagadeesan – Lucent Technologies
James Lewis – Center for Strategic and International Studies
Steve Lipner – Microsoft
Paul Lloyd – HP
Gary McGraw – Cigital
Sam Redwine – James Madison University
Geoff Shively – PivX Solutions
Srinivasa Venkataraman – Software executive
Peggy Weigle – Sanctum
Ulrich Werner – SAP
Gerlinde Zibulski – SAP

Any corrections or comments regarding this report should be sent to Sam Redwine –
redwinst@jmu.edu.

 ii

mailto:redwinst@jmu.edu

Executive Summary
The Software Process Subgroup addressed the process issues raised by the Security-
across-the-Software-Development-Lifecycle Task Force of the National Cyber Security
Summit. This subgroup report defines a path for software producers to follow in
producing secure software and it includes recommendations to software producing
organizations, educators, and the Department of Homeland Security (DHS) on how to
motivate and aid software producers in following these recommendations.

The Problem
Security is now a serious problem and, if present trends continue, the problem will be
much worse in the future. While there are many reasons for security problems, a primary
cause is that much of the software supporting the US cyber infrastructure cannot
withstand security attacks. These attacks exploit vulnerabilities in software systems.

Software security vulnerabilities are caused by defective specification, design, and
implementation. Unfortunately, common development practices leave software with
many vulnerabilities. To have a secure US cyber infrastructure, the supporting software
must contain few, if any, vulnerabilities. This requires that software be built to sound
security requirements and have few if any specification, design, or code defects.

Software specification, design, and code defects are unknowingly injected by software
developers and, to produce software with few defects, common development practices
must change to processes that produce software with very few defects. This requires that
developers use methods that consistently produce secure software, which in turn requires
development organizations to acquire a high level of security expertise, identify and
adopt processes for producing low-defect, secure software, and consistently use this
security expertise and these processes when they produce, enhance, maintain, and rework
the software that supports the US cyber infrastructure.

Current Status
No processes or practices have currently been shown to consistently produce secure
software. However, some available development practices are capable of substantially
improving the security of software systems including having exceptionally low defect
rates. Since introducing these methods requires significant training and discipline, they
will not be widely adopted without strong motivation from sources such as corporate
leaders, customers, or regulation.

Required Actions
This report describes the actions required to address the current situation. The principal
actions are to broaden use of the currently most promising available practices for
developing low-defect, secure software, to produce definitive studies that compare the
relative effectiveness of available security practices, and to work within the software
industry to achieve widespread use of the most effective security practices. A
comprehensive program to validate that candidate software processes consistently
produce secure software is also needed.

 iii

Recommendations
The principal recommendations in this report are in three categories:

Principal Short-term Recommendations
• Adopt software development processes that can measurably reduce software

specification, design, and implementation defects.

• Producers should adopt practices for producing secure software

• Determine the effectiveness of available practices in measurably reducing
software security vulnerabilities, and adopt the ones that work.

• The Department of Homeland Security should support USCERT, IT-ISAC, or
other entities to work with software producers to determine the effectiveness of
practices that reduce software security vulnerabilities.

Principal Mid-term Recommendations
• Establish a security verification and validation program to evaluate candidate

software processes and practices for effectiveness in producing secure software.

• Industry and the DHS establish measurable annual security goals for the principal
components of the US cyber infrastructure and track progress.

Principal Long-Term Recommendations
• Certify those processes demonstrated to be effective for producing secure

software.

• Broaden the research into and the teaching of secure software processes and
practices.

 iv

Table of Contents
FOREWORD... I
EXECUTIVE SUMMARY.. III

THE PROBLEM ... III
CURRENT STATUS ... III
REQUIRED ACTIONS .. III
RECOMMENDATIONS ... IV

Principal Short-term Recommendations...iv
Principal Mid-term Recommendations ...iv
Principal Long-Term Recommendations ..iv

TABLE OF CONTENTS...V
INTRODUCTION...1

SCOPE AND PURPOSE...1
SOFTWARE SECURITY GOALS AND PROPERTIES ..1
SOFTWARE PROCESS ...2
ORGANIZATION OF REPORT...3

THE PROBLEM ...5
CURRENT SOFTWARE SECURITY PROBLEM IS SERIOUS ...5
PROBLEM OF PRODUCING SECURE SOFTWARE IS COMPLEX ..5
PROBLEM OF FORMALLY DEFINING SECURE SOFTWARE IS COMPLEX ..6
WHY ARE EXISTING APPROACHES NOT IN WIDE USE?..7

REQUIREMENTS FOR PROCESSES AND PRACTICES TO PRODUCE SECURE SOFTWARE.9
OVERVIEW ..9
PROCESS REQUIREMENTS..9
PROCESS APPLICATION..10
PROCESS CUSTOMIZATION ..11
CONCLUSIONS ...11

PRACTICES FOR PRODUCING SECURE SOFTWARE ..13
INTRODUCTION..13
SOFTWARE ENGINEERING PRACTICES ...13

The Team Software Process...14
Formal Methods...16

Correctness-by-Construction... 17
Cleanroom ...18

Cleanroom Quality Results ... 19
Process Models ..19

TECHNICAL PRACTICES ...20
Principles of Secure Software Development ..21
Threat Modeling ..21
Attack Trees ...22
Attack Patterns...22
Developer Guidelines and Checklists ..24
Lifecycle Practices...24

Overview... 24
Programming Languages... 26
Tools ... 26
Testing... 27

Risk Management...28

 v

Other Considerations.. 28
Authentication, Authorization, Session Management, and Encryption ... 29
Accountability... 29
Modifications and Patch Management .. 30
Use of Third-Party Software ... 30

MANAGEMENT PRACTICES ... 31
RECOMMENDATIONS FOR THE DHS.. 31

Short Term .. 31
Mid Term... 32
Long Term... 32

QUALIFYING PROCESSES AND PRACTICES AS PRODUCING SECURE SOFTWARE 33
PURPOSE... 33
THE PROBLEMS IN QUALIFYING A PROCESS AS PRODUCING SECURE SOFTWARE 33
THE SUGGESTED VERIFICATION AND QUALIFICATION STRATEGY.. 34
PROMISING QUALIFICATION TECHNIQUES .. 37

Evaluating Available Practices... 37
Surrogate Product Measures .. 37
Product Security Testing ... 38
Formal Security Proofs ... 38

RECOMMENDATIONS FOR DEPARTMENT OF HOMELAND SECURITY ON SOFTWARE PROCESS
QUALIFICATION.. 38

Short-Term Recommendations .. 38
Intermediate-Term Recommendations .. 39
Long-Term Recommendations .. 39

ORGANIZATIONAL CHANGE .. 41
WHAT TO EXPECT ... 41
TOOLS FOR CHANGE ... 43

RECOMMENDATIONS ... 45
SHORT-TERM RECOMMENDATIONS .. 45
MID-TERM RECOMMENDATIONS .. 47
LONG TERM RECOMMENDATIONS .. 48

Certification .. 48
Education and Training .. 48
Accountability ... 48
Evaluating New Technologies... 49

CONCLUSION .. 49
REFERENCES ... 51

 vi

Introduction
Scope and Purpose
Today, security problems involving computers and software are frequent, widespread,
and serious. The number and variety of attacks by persons and malicious software from
outside organizations, particularly via the Internet, are increasing rapidly, and the amount
and consequences of insider attacks remains serious.

This report concentrates on the processes and practices associated with producing secure
software. It mentions only in passing physical, operational, communication, hardware,
and personnel security. These are important topics but outside the scope of this report.
Concentrating on software, however, still covers the bulk of the security vulnerabilities
being exploited today – the ones in software.

Software security issues have long been studied, and, while open questions remain,
considerable bodies of research and practices to address them exist. This report outlines
known practices, recommended actions, and research needs, and is intended for the use of
software producers, the US Department of Homeland Security, and others interested in
improving the processes used to build software with security requirements. While limited
by the three months available for its production and the best knowledge of those
involved, this report provides substantial useful – albeit not exhaustive or all-knowing –
information and guidance for producers of software and those interested in improving the
current situation.

Software Security Goals and Properties
The primary goals of software security are the preservation of the confidentiality,
integrity, and availability (CIA) of the information assets and resources that the software
creates, stores, processes, or transmits including the executing programs themselves.
Preserving confidentiality is about preventing unauthorized disclosure; preserving
integrity is about preventing unauthorized alteration; and preserving availability is about
preventing unauthorized destruction or denial of access or service. The property of non-
repudiation, ensuring the inability to deny the ownership of prior actions, can be of
special interest.

Security is not just a question of security functionality; the properties desired must be
shown to hold wherever required throughout the secure system. Because security
properties are systems properties, security is an omnipresent issue throughout the
software lifecycle. [McGraw 2003]

In addition to the preservation of these properties within its digital domain by a software
system, other systems, organizational, or societal security goals can be contributed to by
software including:

• Establishing the real-world authenticity of users and data
• Establishing accountability of users
• Permitting usability so as to gain users’ acceptance of security features,
• Providing the abilities to deter and mislead attackers, detect attacks when they

happen, notify when they occur, continue service, confine their damage, rapidly

 1

recover from them, easily repair software to prevent future attacks, and
investigate the attackers

 As well as this ability to tolerate and recover from effects of attacks, the ability of a
system to defend in depth with multiple layers of defense is also desirable. Deciding the
extent of security-oriented development effort and functionality is a risk management
decision. Whatever one decides, the required security properties need to be explicitly
defined. Neither in the physical world nor for software can security be absolutely
guaranteed. Thus, when this report speaks of “secure software” the true meaning is
“highly secure software realizing – with justifiably high confidence but not guaranteeing
absolutely – a substantial set of explicit security properties and functionality including all
those required for its intended usage.”

In the remainder of this report we use the following security terminology – hopefully
already familiar to many readers. Threatening entities or agents may possess or be
postulated to possess certain capabilities and intentions creating threats. Threats utilize

vulnerabilities in the
system to perform their
attacks. Adversaries use
specific kinds of attacks
or “exploits” to take
advantage of particular
vulnerabilities in the
system. Systems may
have countermeasures to
reduce certain
vulnerabilities. See
Figure 1: Security
Concepts and
Relationships (Source:
Common Criteria) for
relationships among

As
com
into

Th
num
fac

So
Th
196
res
for
pur
req

2
Figure 1: Security Concepts and Relationships (Source: Common Criteria)
these terms.

 an example, certain classes of vulnerabilities such as buffer overflows have proven
mon in current software – despite the existence of known ways to avoid putting them
 software.

is is just one example of the widespread failure to utilize known practices – later a
ber of these are identified in the Practices section of this report. Encouraging and

ilitating increased use of these practices is a central theme of this report.

ftware Process
e first books enumerating steps for a process to produce software appeared in the early
0’s – if not earlier. Software process has been an active area of work in industry,

earch, and government ever since – within this has been significant work on processes
 high-dependability systems. Today, a plethora of books contain mainly general
pose practices and processes. These range from lightweight processes placing few
uirements on developers to heavyweight ones that provide a high level of guidance,

discipline, and support. [Boehm] Generally and not surprisingly, success in producing
high-dependability systems aimed at safety or security has been greater with software
processes closer to the heavyweight end of the spectrum and performed by highly skilled
people.

To reliably produce secure software, one needs three things:

1. An outstanding software process performed by skilled people

2. A sound mastery of the relevant security expertise, practices, and technology

3. The expert management required to ensure the resources, organization,
motivation, and discipline for success

Achieving these three things will require considerable effort by organizations that already
have simply a good software engineering process and even more from the bulk of
organizations that fall short of having even this. These processes and the required skill
and expertise to carry them out are the central issue in this report. Improving software
engineering practices and processes can not only lead to secure software but to software
released with few defects, with reasonable costs of development, with lower maintenance
costs, and with an enhanced reputation for the product.

Organization of Report
In addition to its Executive Summary, Foreword, and this Introduction, this report
contains sections on:

• The Problems involved in producing secure software
• Requirements for processes and practices to produce secure software
• Practices for producing more secure software
• Organizational Changes needed for introduction, use, and improvement of

processes and practices
• Qualifications: Verification, validation, and approval of processes, practices,

people, and products
• Recommendations

The problem section covers security and the current situation, and views of the problem
from industry, risk management, process, technical, product, and organizational
perspectives. The requirements section enumerates a set of required properties for a
process (or practice) to produce secure software in which one can have justifiable
confidence. Related issues are addressed in the Qualification section.

The bulk of this report is dedicated to describing current practices. While brief and only
covering a subset of the candidates for leading practices, these should prove to include
items that many can take immediate action on.

A section on the introduction, use, and improvement of processes and practices is
included to introduce organizations wishing to improve to the many issues involved in
organizational change and the body of knowledge about how to address them.

This report ends with sections on recommendations to industry, government, and
academia covering the near, mid, and long terms; and final conclusions.

 3

 4

The Problem
Current Software Security Problem is Serious
Intrusion and malicious software cost US industry and government ten plus billion dollars
per year and potential attacks on critical infrastructure remain a serious concern. New
automatic attack triggers require no human action to deliver destructive payloads. Security
incidents reported to the CERT Coordination Center rose 2,099 percent from 1998 through
2002 – an average annual compounded rate of 116 percent. During 2003, the total was
137,529 incidents up from 82,094 in 2002. An incident may involve one to hundreds (or
even thousands) of sites and ongoing activity for long periods. These incidents resulted from
vulnerabilities. Figure 2 shows the yearly number of vulnerabilities reported to CERT CC.
These can impact the critical infrastructure of the US as well as its commerce and security.

The substantial costs of a
vulnerability to producers
result from a number of
activities – initial testing,
patching, remediation
testing, and distribution, as
well as negative impact on
reputation. Thus, producers
can suffer serious
consequences.

The losses of confidentiality
resulting in identity theft or
stolen credit numbers are
frequently reported.
Substantial fraud losses
through unauthorized
changes or transactions
violating integrity are
occurring. Denial of service

major Interne
and reducing
The problem
availability p
already a ser
measured by
operating env

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1999 2000 2001 2002 2003

Problem of
For many rea
provisions fo
developer. T

Figure 2: Vulnerabilities Reported to CERT CC
attacks have occurred against
t e-commerce sites. For most software producers, however, combating these
their and society’s costs by producing secure software faces severe problems.
s in producing software with the proper confidentiality, integrity, and
roperties compound the existing problem of producing quality software –
ious one. Another way of saying this is that the quality of software (as
 vulnerabilities) is frequently not adequate to meet the demands of the
ironment.

Producing Secure Software is Complex
sons, producing secure software is complex. Connection to the Internet and
r user extensibility introduce elements uncontrolled by the original
he software product and its code are often already large and complex

5

themselves. Code has multiple roles as both a real-world actor and an engineering
representation.

Software’s production is a complex process involving many activities and specialties.
The types of activities range from requirements through maintenance plus management
and support tasks – each produces its own products. Dozens of specialties exist. For
example, just within design we have database design, network design, human interface
design, and security engineering design as well as the mainstream software architectural
and detailed design specialties. Other specialties such as business process, performance,
safety, and reliability engineering may also contribute. Thus, dozens of different kinds of
specialties and products are involved in a large development effort ranging from the
highly technical to management status reviews.

Computer science and security are deep subjects. As just one security-related example,
when two or more software components each possessing a security property are
combined, the resulting combination may not exhibit the property. Furthermore, the
analysis to establish if this is true can be quite subtle. And, in order to be done well,
software engineering and security engineering require serious engineering endeavors.

Producing quality software requires personnel with substantial education, training, and
experience. The project management involved in a substantial software project is also
significant with management issues causing more failed projects than technical ones.

The problems in correctly implementing the required security-related properties and
functionality encompass all those normally involved in producing defect free software on
time and within budget – plus issues involving security. Without analysis, any
specification, design, or code defect in the software may be potentially exploitable – thus,
the extreme need for few or no defects. Furthermore, verification needs to cover guarding
against intelligent adversaries – not just random adversity.

Justifiable confidence in the product can be created by design and construction in a
manner that is shown – possibly partially mathematically – to preserve the required
properties and provide security with an extremely low defect rate. To be able to do this,
the system design and preferably code need to be analyzable, which, given the state of the
art, restricts the structures that may be used. In addition, one can verify the absence of
known security defect types, [Whittaker] [Hogland] but, while quite useful, ultimately
this is not a substitute for proper design and construction.

The software development organization and environment must itself be secure. While
extensive, automated tool support has limitations. Finally, the software is sure to evolve
and change.

Thus, the problem of producing software with the proper confidentiality, integrity,
availability, and non-repudiation properties compounds the existing problem of
producing quality software, which is already a serious one. No easy answer exists to the
problem of building quality secure software.

Problem of Formally Defining Secure Software Is Complex
The problem of establishing the security properties and functionality a system should
have, both today and in the future, is difficult. Security functionality can be extensive;

 6

Part 2 of the Common Criteria document takes 155 pages to enumerate possible security-
related functionality and has an equal number of pages of details and notes. [Common
Criteria Part 2] Security requirements are not just a question of listing security
functionality; the properties required must be shown to hold wherever required
throughout the secure system. Contrary to what most users and even many developers
assume, security functionality does not necessarily provide genuine security; security is a
systems property emerging from the totality of system behavior.

The first necessity for secure software is specifications that define secure behavior
exhibiting the security properties required. The specifications must define functionality
and be free of vulnerabilities that can be exploited by intruders. The second necessity for
secure software is correct implementation meeting specifications. Software is correct if it
exhibits only the behavior defined by its specification – not, as today is often the case,
exploitable behavior not specified, or even known to its developers and testers.

What kind of security and privacy are required, and what are its costs and risks are hard
questions. Technical judgment is not enough; management and marketing judgments are
required particularly when customers have limited interest in security or paying for it – or
possibly do not ask for it because they assume it is already included.

Why are Existing Approaches Not in Wide Use?
Largely driven by needs for high reliability and safety, approaches to building high-
dependability software systems exist today. As we will see in the section on Practices,
mating these with security concerns has already resulted in processes used on real
projects to produce secure software.

Doing what is required and carrying it to the extremes necessary is difficult on all levels –
individual, team, project, and organization – and includes others if out sourcing or
acquisition are involved. While, for current successful users, evidence exists that once
achieved such processes may take less time and effort, reaching there takes substantial
amounts of both.

This cost and required organizational courage and strain is one reason few organizations
currently use these practices for producing secure software – we address this problem in
the Organizational Change section – but other reasons exist. The first is that many
organizations do not recognize such approaches exist. This document is a step toward
solving this as are other current publications. [ACM] [Anderson] [IEEE] Another reason
is the belief that security is not required for product success. This comes from the
existence of other goals that are viewed as more important such as user convenience,
additional functionality, lower cost, and speedy time to market plus evidence that these
are what have sold products in the past.

On the other hand, legal demands for secure software are increasing; one example is
HIPAA in the health field,1 and, if software security problems persist, the spectre exists
of further regulation in the US and abroad. [Payne] In the absence of regulation, demand,
or competitive offerings, good citizenship or uncertain predictions of future demand have
had varying influences. Some organizations, however, such as Microsoft, are spending

1 Other laws having some impact include The Sarbanes-Oxley Act, Gramm-Leach-Bliley Act, and California SB 1386
(California Civil Code § 1798.82)

 7

substantial sums in attempts to improve the security of their products. [Howard 2003]
[Walsh]

Following increased awareness and unfortunate experiences, customers and users have
increased demands for security, but it is unclear how much more they will be willing to
pay for it or what the payoff for producers will be. Also, currently in the US, vendors are
avoiding almost all liability for any damages done or expenses caused to their customers
and users from software security problems. Lastly, secure software can only provide
security if it is properly operated and used. Organizations can experience discouraging
incidents not because of software faults but from such causes as improper settings or
procedures.

Reportedly, Microsoft has found that 50% of software security problems are design flaws.
[McGraw 2003] Avoiding these types of design problems requires high levels of security
and design expertise. Within many software development organizations, personnel
currently do not have the mathematical backgrounds or the software and security design
and programming sophistication to use many of the approaches covered in the Practices
section. Like the prerequisite need to have a good software process before one can have
an outstanding one mentioned in the introduction, any such personnel shortcomings also
must be addressed.

While for most organizations the needed substantial change will be a hard path and
known practices are not perfect, the following sections in this report provide information
and motivation to those willing to take the journey.

 8

Requirements for Processes and Practices
to Produce Secure Software

Overview
The previous section described the problems in producing secure software. Addressing
these problems requires organizations developing and maintaining software use processes
that consistently produce secure software. This section describes the key requirements for
such software development processes. Follow-on sections discuss specific practices,
process verification, and introducing such a process into an organization.

These process requirements do not require any particular design, development, testing, or
other methods. Rather, they enumerate required characteristics – including management,
and measurement support.

Process Requirements
To effectively produce secure software and provide a secure cyber infrastructure, any
selected process must meet the following requirements.

• Coverage A secure process must cover the full software lifecycle from the earliest
requirements through design, development, delivery, maintenance, enhancement,
and retirement as well as all specialties required. Whenever necessary, the process
used must be capable of economically and securely maintaining, enhancing, and
reworking existing products to bring them up to an acceptable level of quality and
security including, when needed, exceptionally large software and systems.

• Definition The process must be precisely defined so that it can be taught,
supported, verified, maintained, enhanced, and certified and all products and all
process activities must be precisely and comprehensively measured.

• Integrity The process must establish and guard the integrity of the product
throughout the life-cycle, starting with the requirements and design work and
including rigorous, secure configuration management and deployment. The
process must also provide means to help ensure the honesty, integrity, and non-
maliciousness of all the persons involved in product development, enhancement,
testing, and deployment.

• Measures The process must include measures to verify that the product
developers are capable of consistently and correctly using the process, that the
process instructors properly train the developers to consistently and accurately use
the process, that the correct process was properly used to develop the product, and
that the process consistently produces secure software products. In addition to
measuring all of the product work, measures are also required of all security-
relevant product characteristics and properties. To perform in this way, software
organizations must work to defined software engineering, security, and
management goals and they must precisely measure and track their work
throughout the product’s lifetime. These measures must provide the data needed
to estimate and plan the work, to establish team and personal goals, to assess

 9

project status, to report project progress to management, to verify the quality of
all phases of the work, to assess the quality of all products produced, and to
identify troublesome product characteristics and elements. Such measures must
also show how well the process was used and where and when corrective actions
are needed. These measures can also be used to assess the quality of the training
and coaching provided to the developers and their teams. Without such measures,
it would be impossible to verify the consistent and proper use of the process or of
the methods and practices it supports.

• Tailoring The process must permit tailoring and enable verification that such
tailoring does not compromise the security of the resulting products.

• Usability The process must be usable by properly trained and qualified software
developers, security specialists, managers, and other professionals, and it must be
economical and practical to use for developing a reasonably wide and defined
range of software product types.

• Ownership The process must be owned, supported, widely available, and
regularly updated to reflect changing threat conditions and improvements in
knowledge and technology. To have continuing confidence, all process updates
must be rapidly and verifiably disseminated to all users – this in turn requires
having a known set of users. Misuse must be prevented. Whenever intellectual
property issues are relevant, the process must be protected from counterfeiting,
copying, and other forms of piracy. While the process owner could be an
individual, a corporation, or a university, it could also be a government agency, a
user consortium, an open-source association, or any other established group that
maintained the process consistent with these requirements.

• Support The process must be fully supported with training programs, course
material, instructor’s guides, supporting tools, and qualification testing. Suitable
knowledge and skill training must be available for all the people who are involved
either directly or indirectly. Process support must include provisions for
transitioning the process into widespread use, qualifying instructors to teach the
process, training specialists to verify the proper use of the process, and certifying
that qualified developers produced any resulting products by properly using a
qualified process.

• State of the Practice. The process must include use of quality state of the practice
methods for design, development, test, product measurement, and product
documentation. As the state of the art and state of the practice advance, the
process must enable the adoption of new methods including any required training
and support.

Process Application
A process owner must enable organizations to qualify their own process specialists, to
train their own software people, and to manage their own development work. Provisions
must also be made to provide organizations with the skills and expertise to monitor and
review their own work and to verify that their products are secure. While the training and
qualification of software developers could be entrusted to educational, consulting, and

 10

using organizations, all development and product qualification work must be rigorously
controlled and tracked.

In addition, the training and qualification of process instructors and process coaches
and/or reviewers must remain controlled and monitored to ensure a high degree of
compliance. Further, there must be provisions for training all levels of development
management from the most senior executives to the development team leaders, the
individual team members, and the testing and assurance staffs. This training must be
consistently effective in motivating and guiding all management levels in properly
introducing and monitoring the use of the process.

Provisions must exist for auditing product certifications to ensure that they are justified
by the available data.

Provisions must also exist for identifying and qualifying new processes or practices that
produce secure software and that are shown to meet the defined requirements for a
process to produce secure software.

Process Customization
To be widely applicable, a secure development process must fit the needs of each using
organization. This must permit software groups to adjust the process to use new methods,
tools, and technologies and be flexible enough to support integrated development teams
that include software development and all other specialties needed for the software and
systems work. With multiple using organizations, an organization must – within
identified limitations – be able to define the specific process details for its own use,
specify the methods and technologies its people will use, and gather and supply the data
needed to verify the security of the process it uses and the products it produces.

Conclusions
This section has briefly summarized requirements for a secure software development
process. Such a process requires outstanding software engineering, sound security
engineering, extensive training, consistently disciplined work, comprehensive data, and
capable and effective management and coaching support. Software processes that meet
the requirements enumerated in this section will enable qualified software groups to help
secure the US cyber infrastructure.

As we will see in the next section, methods and practices are known for producing high-
quality and secure software, but they are not widely practiced. Their effective application
requires that software teams consistently use defined, measured, and quality-controlled
processes. When they work in this way, teams can produce essentially defect-free
software products that are highly likely to be secure [Davis] [Hall 2002]. Further, with
such processes, software groups have the data to identify the most effective quality and
security practices, to ensure that these practices are consistently followed, and to verify
that the resulting products are secure.

 11

Practices for Producing Secure Software
Introduction
As discussed in the previous sections, the problem of producing secure software is both a
software engineering problem and a security engineering problem. Software engineering
addresses problems such as planning, tracking, quality management, and measurement as
well as engineering tasks. Security engineering addresses methods and tools needed to
design, implement, and test secure systems. This section starts with a discussion of
software processes that implement software engineering best practices, followed by a
description of technical practices that can be used in various phases of a software
development lifecycle. Thirdly, management practices are discussed. Finally, additional
recommendations are made to the DHS to accelerate the adoption these processes and
practices for producing secure software. Overall, the recommendations can be
summarized as:

1. Start with outstanding software engineering practices.
2. Augment with sound technical practices relevant to producing secure software.
3. Support with the management practices required for producing secure software.
4. Wherever possible, quantitatively measure the effectiveness of a practice and

improve.

Each section starts with a description of a practice, process, or method, and then presents
any evidence of its effectiveness followed by any known usage problems.

Software Engineering Practices
Many security vulnerabilities result from defects that are unintentionally introduced in
the software during design and development. According to a preliminary analysis done
by the CERT® Coordination Center, over 90% of software security vulnerabilities are
caused by known software defect types2, and most software vulnerabilities arise from
common causes: the top ten causes account for about 75% of all vulnerabilities.

Therefore, to significantly reduce software vulnerabilities, the overall specification,
design, and implementation defects in software must be reduced from today’s common
practices that lead to a large number of these defects in released software. Analysis
performed at the Software Engineering Institute (SEI) of thousands of programs produced
by thousands of software developers show that even experienced developers inject
numerous defects as they produce software [Hayes] [Davis]. One design or
implementation defect is injected for every 7 to 10 lines of new and changed code
produced. Even if 99% of these design and implementation defects are removed before
the software is released, this leaves 1 to 1.5 design and implementation defects in every
thousand lines of new and changed code produced. Indeed, software benchmark studies
conducted on hundreds of software projects show that the average specification, design,

2 The definition of a defect as used in this paper is fairly broad: a defect is anything that leads to a fix in a product.
Some examples of defects include requirements defects, design defects, security defects, usability defects, as well as
coding errors or “bugs”. To reinforce the fact that we are not just talking about coding errors, we will use the words
specification, design and implementation defects throughout this section.

 13

and implementation defect content of released software varies from about 1 to 7 defects
per thousand lines of new and changed code produced [Jones 2000].

This, along with consideration of the nature of security problems, leads to the conclusion
that reducing overall design and implementation defects by one to two orders of
magnitude is a prerequisite to producing secure software. To be effective, these practices
should be used in a planned and managed environment.

The following processes and process models were developed to improve software
engineering practices. Particular attention has been paid to those that have demonstrated
substantial reduction in overall software design and implementation defects, as well as
reduction in security vulnerabilities.

The Team Software Process
The Software Engineering Institute’s Team Software ProcessSM (TSP) is an operational
process for use by software development teams. The process has been shown to be very
effective for producing near defect-free software on schedule and within budget. To date,
the TSP has been used by many organizations. A recent study of 20 projects in 13
organizations showed that teams using the TSP produced software with an average of
0.06 delivered design and implementation defects per thousand lines of new and changed
code produced. The average schedule error was just 6% [Davis].

The TSP’s operational process definitions are based on Deming’s concept of an
operational definition “that gives communicable meaning to a concept by specifying how
the concept is measured and applied within a particular set of circumstances” [Deming].
Operational processes provide step-by-step guidance on how to do something and then
how to measure what has been done.

The SEI developed the TSP as a set of defined and measured best practices for use by
individual software developers and software development teams [Humphrey]. Teams
using the TSP:

1. Manage and remove specification, design, and implementation defects throughout
the developed lifecycle

a. Defect prevention so specification, design, and implementation defects are
not introduced to begin with

b. Defect removal as soon as possible after defect injection

2. Control the process through measurement and quality management

3. Monitor the process

4. Use predictive measures for remaining defects

Since schedule pressures and people issues often get in the way of implementing best
practices, the TSP helps build self-directed development teams, and then puts these teams
in charge of their own work. TSP teams:

1. Develop their own plans

SM Team Software Process, TSP, Personal Software Process, and PSP are service marks of Carnegie Mellon University.

 14

2. Make their own commitments

3. Track and manage their own work

4. Take corrective action when needed

The TSP includes a systematic way to train software developers and managers, to
introduce the methods into an organization, and to involve management at all levels.

The Team Software Process for Secure Software Development (TSP-Secure) augments
the TSP with security practices throughout the software development lifecycle. Software
developers receive additional training in security issues, such as common causes of
security vulnerabilities, security-oriented design methods such as formal state machine
design and analysis, security-conscious implementation methods such as secure code
review checklists, as well as security testing methods. While the TSP-Secure variant of
the TSP is relatively new, a team using TSP-Secure produced near defect-free software
with no security defects found during security audits and in several months of use.

The following tables show some results of using the TSP on 20 projects in 13
organizations [Davis]. The projects were completed between 2001 and 2003. Project size
varied from a few hundred to over a hundred thousand lines of new and changed code
produced. The mean and median size of the projects was around thirty thousand lines of
new and changed code produced. Table 1 shows schedule performance compared to
results reported by the Standish Group. Table 2 shows quality performance compared to
typical software projects.

Table 1: TSP Project Results - Schedule

Measure TSP Projects
Typical Projects

(Standish Group Chaos Report)

Schedule error average 6%

Schedule error range -20% to +27%

Cancelled
29%

On-Time
26%

101%-200% late
16%

51%-100% late
9%

21%-50% late
8%

Less than 20% late
6%

More than 200% late
6%

 15

Measure TSP Projects
Average
Range

Typical Projects
Average

System test defects (design and
implementation defects discovered during
system test, per thousand lines of new and
changed code produced)

0.4
0 to 0.9

2 to 15

Delivered defects (design and
implementation defects discovered after
delivery, per thousand lines of new and
changed code produced)

0.06
0 to 0.2

1 to 7

System test effort (% of total effort of
development teams)

4%
2% to 7%

40%

System test schedule (% of total duration
for product development)

18%
8% to 25%

40%

Duration of system test (days/KLOC, or
days to test 1000 lines of new and changed
code produced)

0.5
0.2 to 0.8

NA3

Table 2: TSP Project Results - Quality

The difficulties with using the TSP primarily concern the initial required investment in
training. To properly use the TSP, software developers must first be trained in the
Personal Software Process (PSP) and must be willing to use disciplined methods for
software development. The TSP cannot be introduced or sustained without senior and
project management support and oversight. Finally, for most organizations, effective TSP
use requires that the management and technical cultures enable rigorously performed
technical work and consistent, sustained coaching, empowerment, and motivation of self-
directed TSP teams.

Formal Methods
Formal methods are mathematically-based approaches to software production that use
mathematical models and formal logic to support rigorous software specification, design,
coding, and verification. The goals of most formal methods are to

• Reduce the defects introduced into a product, especially during the earlier
development activities of specification and design.

• Place confidence in the product not on the basis of particular tests, but on a
method that covers all cases

Formal methods can be applied to a few or to almost all software development activities:
requirements, design, and implementation. The degree to which formal methods are
applied varies from the occasional use of mathematical notations in specifications
otherwise written in English, to the most rigorous use of fully formal languages with
precise semantics and associated methods for formal proofs of consistency and
correctness throughout development.

There is an alphabet soup of tools, notations, and languages available for use: from
(alphabetically) ADL (Algebraic Design Language), a higher-order software specification

3 This data was not available.

 16

language based on concepts in algebra, developed at the Oregon Graduate Institute, to Z
(Zed), a formal notation for writing specifications [Spivey].

Several NASA case studies describe the results of using formal methods for requirements
analysis [NASA]. Benefits of using a formal specification notation such as the Z notation
have been documented [Houston]. With at least one negative exception [Naur], other
studies investigating the effectiveness of formal methods have been somewhat
inconclusive, but tend to support a positive influence on product quality [Pfleeger].

Correctness-by-Construction
One process that incorporates formal methods into an overall process of early verification
and defect removal throughout the software lifecycle is the Correctness-by-Construction
method of Praxis Critical Systems Limited [Hall 2002]. The principles of Correctness-by-
Construction are:

1. Do not introduce errors in the first place.

2. Remove any errors as close as possible to the point that they are introduced.

This process incorporates formal notations used to specify system and design components
with review and analyses for consistency and correctness. For secure systems, they
categorize system state and operations according to their impact on security and aim for
an architecture that minimizes and isolates security-critical functions reducing the cost
and effort of the (possibly more rigorous) verification of those units.

The Correctness-by-Construction method has produced near-defect-free software in five
projects completed between 1992 and 2003, with delivered defect densities ranging from
0.75 to 0.04 defects per thousand lines of code. Two of the five projects had substantial
security requirements to fulfill. The following table shows details [Hall 2004]. Table 3
presents key metrics for each of these projects. The first column identifies the project.
The second identifies the year in which the project was completed. Column three shows
the size of the delivered system in physical non-comment, non-blank lines of code. The
fourth column shows productivity (lines of code divided by the total project effort for all
project phases from project start up to completion). The final column reports the
delivered defect rate in defects per thousand lines of code.
Project Year Size (loc) Productivity (loc

per day)
Defects (per kloc)

CDIS 1992 197,000 12.7 0.75

SHOLIS 1997 27,000 7.0 0.22

MULTOS CA 1999 100,000 28.0 0.04

A 2001 39,000 11.0 0.05

B 2003 10,000 38.0 04

Table 3: Correctness-by-Construction Project Results

Almost all US software production organizations know little or nothing about formal
methods; some others are reluctant to use them. First, while for many methods the actual

4 This project has been subject to evaluation by an independent V&V organization. Zero software defects have been
found, but the independent test results are not yet officially released.

 17

mathematics involved is not advanced, these methods require a mathematically rigorous
way of thinking that most software developers are unfamiliar with. Second, as with TSP,
they involve substantial up-front training. Lastly, the methods require the use of
notations, tools, and programming languages that are not in widespread use in industry,
thus requiring substantial changes from the way most organizations produce software
today.

Cleanroom
Cleanroom software engineering [Linger 2004] [Mills] [Powell] is a theory-based, team-
oriented process for developing and certifying correct software systems under statistical
quality control. The name “Cleanroom” conveys an analogy to the precision engineering
of hardware cleanrooms. Cleanroom covers the entire life cycle, and includes project
management by incremental development, function-based specification and design,
functional correctness verification, and statistical testing for certification of software
fitness for use. Cleanroom teams are organized into specification, development, and
certification roles. Cleanroom software engineering achieves statistical quality control
over software development by separating the design process from the statistical testing
process in a pipeline of incremental software development, as described below.

Incremental Development. System development is organized into a series of fast
increments for specification, development, and certification. Increment functionality is
defined such that successive increments 1) can be tested in the system environment for
quality assessment and user feedback, and 2) accumulate into the final product—
successive increments plug into and extend the functionality of prior increments; when
the last increment is added, the system is complete. The theoretical basis for such
incremental development is referential transparency between specifications and their
implementations. At each stage, an executing partial product provides evidence of
progress and earned value. The incremental development motto is “quick and clean;”
increments are small in relation to entire systems, and developed fast enough to permit
rapid response to user feedback and changing requirements.

Function-Based Specification and Design. Cleanroom treats programs as
implementations of mathematical functions or relations. Function specifications can be
precisely defined for each increment in terms of black box behavior, that is, mappings
from histories of use into responses, or state box behavior, that is, mappings from
stimulus and current state into response and new state. At the lower level of program
design, intended functions of individual control structures can be defined and inserted as
comments for use in correctness verification. At each level, behavior with respect to
security properties can be defined and reviewed.

Functional Correctness Verification. A correctness theorem defines the conditions to
be verified for each programming control structure type. Verification is carried out in
team inspections with the objective of producing software approaching zero defects prior
to first-ever execution. Experience shows any errors left behind by human fallibility tend
to be superficial coding problems, not deep design defects.

Statistical Testing. With no or few defects present at the completion of coding, the role
of testing shifts from debugging to certification of software fitness for use through usage-
based statistical testing. Models of usage steps and their probabilities are sampled to

 18

generate test cases that simulate user operations. The models treat legitimate and
intrusion usage on a par, thereby capturing both benign and threat environments. Usage-
based testing permits valid statistical estimation of quality with respect to all the
executions not tested and tends to find any remaining high-failure-rate defects early,
thereby quickly improving the MTTF of the software. Because fewer defects enter test,
Cleanroom testing is more efficient. Historically, statistical testing has been a tool to
predict reliability, not security.

Cleanroom Quality Results
The Cleanroom process has been applied with excellent results. For example, the
Cleanroom-developed IBM COBOL Structuring Facility automatically transforms
unstructured legacy COBOL programs into structured form for improved maintenance,
and played a key role in Y2K program analysis. This 85-KLOC program experienced just
seven minor errors, all simple fixes, in the first three years of intensive field use, for a
fielded defect rate of 0.08 errors/KLOC [Linger 1994].

Selective application of Cleanroom techniques also yields good results. For example, as
reported in [Broadfoot], Cleanroom specification techniques were applied to development
of a distributed, real-time system. Cleanroom specifications for system components were
transformed into expressions in the process algebra CSP. This allowed use of a theorem
prover or model checker to demonstrate that the resulting system was deadlock-free and
independent of timing issues. The resulting system consisted of 20 KLOC of C++ which
in twelve months of field use of the system, only eight minor defects were discovered; all
localized coding errors easy to diagnose and fix.

A number of Cleanroom projects involve classified activities that cannot be reported
upon. Overall experience shows, however, that fielded defect rates range from under 0.1
errors/ KLOC with full Cleanroom application to 0.4 defects/KLOC with partial
Cleanroom application. Many code increments never experience the first error in testing,
measured from first-ever execution, or in field use. Defects found have tended to be
coding errors rather than specification or design problems.

Adopting Cleanroom Software Engineering requires training and discipline. Cleanroom
utilizes theory-based correctness verification in team reviews rather than less-effective
unit debugging – for some programmers, this switch can be an initial stumbling block.
Some Cleanroom methods have been incorporated in TSP projects. Its methods of proof
are performed more informally than those in Correctness by Construction and are more
accessible to programmers.

Process Models
Process models provide goal-level definitions for and key attributes of specific processes
(for example, security engineering processes), but do not include operational guidance for
process definition and implementation – they state requirements and activities of an
acceptable process but not how to do it. Process models are not intended to be how-to
guides for improving particular engineering skills. Instead, organizations can use the
goals and attributes defined in process models as high-level guides for defining and
improving their management and engineering processes in the ways they feel are most
appropriate for them.

 19

Capability Maturity Models (CMMs) are a type of process model intended to guide
organizations in improving their capability to perform a particular process. CMMs can
also be used to evaluate organizations against the model criteria to identify areas needing
improvement. CMM-based evaluations are not meant to replace product evaluation or
system certification. Rather, organizational evaluations are meant to focus process
improvement efforts on weaknesses identified in particular process areas. CMMs are
currently used by over a thousand organizations to guide process improvement and
evaluate capabilities.

There are currently three CMMs that address security, the Capability Maturity Model
Integration® (CMMI®), the integrated Capability Maturity Model (iCMM), and the
Systems Security Engineering Capability Maturity Model (SSE-CMM). A common
Safety and Security Assurance Application Area is currently under review for the iCMM
and CMMI, along with a new Process Area for Work Environment, and the proposed
goals and practices have been piloted for use. All of these CMMs are based on the
Capability Maturity Model (CMM®). Further information about the SSE-CMM is
available at http://www.sse-cmm.org, about the CMMI at http://www.sei.cmu.edu, and
about iCMM at www.faa.gov/aio or www.faa.gov/ipg. Further information is also
available in materials that accompany this report.

The plethora of models and standards can be somewhat daunting (SSE-CMM, iCMM,
CMMI-SE/SW/IPPD and CMMI-A, ISO 9001:2000, EIA/IS 731, Malcolm Baldrige
National Quality Award, Total Quality Management, Six Sigma, President's Quality
Award criteria, ISO/IEC TR 15504, ISO/IEC 12207, and ISO/IEC CD 15288). Evidence
exists, however, that using process models for improving the software process results in
overall reduction in design and implementation defects in the software produced
[Herbsleb] [Goldenson] [Jones].

Technical Practices
Some security vulnerabilities are caused by oversights that lead to defect types such as
declaration errors, logic errors, loop control errors, conditional expression errors, failure
to validate input, interface specification errors, and configuration errors. These causes can
be addressed to a large degree by using software engineering practices. However, other
security vulnerabilities are caused by security-specific modeling, architecture, and design
issues such as failure to identify threats, inadequate authentication, invalid authorization,
incorrect use of cryptography, failure to protect data, and failure to carefully partition
applications. Effective practices that directly address security are needed to handle these
problems. Technical practices must be used within the overall context of a planned and
managed process for producing secure software that plans the use of the practices,
monitors their execution, and measures their effectiveness. Most, if not all, of the
technical practices described here require considerable security expertise. Available
expert help is recommended during all phases of the software lifecycle, especially during
specification and design.

 Capability Maturity Model, CMM, Capability Maturity Model Integrated, and CMMI are registered trademarks of
Carnegie Mellon University.

 20

http://www.sei.cmu.edu/
http://www.faa.gov/aio
http://www.faa.gov/ipg

While many technical practices are in use today for producing secure software, very little
empirical evidence exists of their effectiveness.

This section begins with a discussion of some well-tested principles for secure software
development. Then, some of the better-known practices for producing secure software are
briefly described. Other practices worth considering exist. The list of practices included
in this subsection is not exhaustive, but is hopefully representative. Empirical or
anecdotal evidence of effectiveness is noted where available.

Principles of Secure Software Development
While principles alone are not sufficient for secure software development, principles can
help guide secure software development practices. Some of the earliest secure software
development principles were proposed by Saltzer and Schroeder in 1974 [Saltzer]. These
eight principles apply today as well and are repeated verbatim here:

1. Economy of mechanism: Keep the design as simple and small as possible.

2. Fail-safe defaults: Base access decisions on permission rather than exclusion.

3. Complete mediation: Every access to every object must be checked for authority.

4. Open design: The design should not be secret.

5. Separation of privilege: Where feasible, a protection mechanism that requires two
keys to unlock it is more robust and flexible than one that allows access to the
presenter of only a single key.

6. Least privilege: Every program and every user of the system should operate using
the least set of privileges necessary to complete the job.

7. Least common mechanism: Minimize the amount of mechanism common to more
than one user and depended on by all users.

8. Psychological acceptability: It is essential that the human interface be designed
for ease of use, so that users routinely and automatically apply the protection
mechanisms correctly.

Later work by Peter Neumann [Neumann], John Viega and Gary McGraw [Viega], and
the Open Web Application Security Project (http://www.owasp.org) builds on these basic
security principles, but the essence remains the same and has stood the test of time.

Threat Modeling
Threat modeling is a security analysis methodology that can be used to identify risks, and
guide subsequent design, coding, and testing decisions. The methodology is mainly used
in the earliest phases of a project, using specifications, architectural views, data flow
diagrams, activity diagrams, etc. But it can also be used with detailed design documents
and code. Threat modeling addresses those threats with the potential of causing the
maximum damage to an application.

Overall, threat modeling involves identifying the key assets of an application,
decomposing the application, identifying and categorizing the threats to each asset or
component, rating the threats based on a risk ranking, and then developing threat
mitigation strategies that are then implemented in designs, code, and test cases.

 21

http://www.owasp.org/

Microsoft has defined a structured method for threat modeling, consisting of the
following steps [Howard 2002].

1. Identify assets

2. Create an architecture overview

3. Decompose the application

4. Identify the threats

5. Categorize the threats using the STRIDE model (Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and Elevation of
privilege)

6. Rank the threats using the DREAD categories (Damage potential,
Reproducibility, Exploitability, Affected users, and Discoverability).

7. Develop threat mitigation strategies for the highest ranking threats

Other structured methods for threat modeling are available as well [Schneier].

Although some anecdotal evidence exists for the effectiveness of threat modeling in
reducing security vulnerabilities, no empirical evidence is readily available.

Attack Trees
Attack trees characterize system security when faced with varying attacks. The use of
Attack Trees for characterizing system security is based partially on Nancy Leveson’s
work with "fault trees" in software safety [Leveson]. Attack trees model the decision-
making process of attackers. Attacks against a system are represented in a tree structure.
The root of the tree represents the potential goal of an attacker (for example, to steal a
credit card number). The nodes in the tree represent actions the attacker takes, and each
path in the tree represents a unique attack to achieve the goal of the attacker.

Attack trees can be used to answer questions such as what is the easiest attack. The
cheapest attack? The attack that causes the most damage? The hardest to detect attack?
Attack trees are used for risk analysis, to answer questions about the system’s security, to
capture security knowledge in a reusable way, and to design, implement, and test
countermeasures to attacks [Viega] [Schneier] [Moore].

Just as with Threat Modeling, there is anecdotal evidence of the benefits of using Attack
Trees, but no empirical evidence is readily available.

Attack Patterns
Hoglund and McGraw have identified forty-nine attack patterns that can guide design,
implementation, and testing [Hoglund]. These soon to be published patterns include:

1. Make the Client Invisible

2. Target Programs That Write to
Privileged OS Resources

3. Use a User-Supplied
Configuration File to Run

Commands That Elevate
Privilege

4. Make Use of Configuration File
Search Paths

5. Direct Access to Executable Files

 22

28. Client-side Injection, Buffer
Overflow

6. Embedding Scripts within Scripts

7. Leverage Executable Code in
Nonexecutable Files 29. Cause Web Server

Misclassification 8. Argument Injection
30. Alternate Encoding the Leading

Ghost Characters 9. Command Delimiters

10. Multiple Parsers and Double
Escapes 31. Using Slashes in Alternate

Encoding
11. User-Supplied Variable Passed to

File System Calls 32. Using Escaped Slashes in
Alternate Encoding

12. Postfix NULL Terminator 33. Unicode Encoding
13. Postfix, Null Terminate, and

Backslash 34. UTF-8 Encoding

35. URL Encoding 14. Relative Path Traversal
36. Alternative IP Addresses 15. Client-Controlled Environment

Variables 37. Slashes and URL Encoding
Combined 16. User-Supplied Global Variables

(DEBUG=1, PHP Globals, and
So Forth)

38. Web Logs

39. Overflow Binary Resource File
17. Session ID, Resource ID, and

Blind Trust 40. Overflow Variables and Tags

41. Overflow Symbolic Links 18. Analog In-Band Switching
Signals (aka “Blue Boxing”) 42. MIME Conversion

43. HTTP Cookies 19. Attack Pattern Fragment:
Manipulating Terminal Devices 44. Filter Failure through Buffer

Overflow 20. Simple Script Injection
45. Buffer Overflow with

Environment Variables
21. Embedding Script in Nonscript

Elements
46. Buffer Overflow in an API Call 22. XSS in HTTP Headers
47. Buffer Overflow in Local

Command-Line Utilities
23. HTTP Query Strings

24. User-Controlled Filename
48. Parameter Expansion 25. Passing Local Filenames to

Functions That Expect a URL 49. String Format Overflow in
syslog() 26. Meta-characters in E-mail

Header

27. File System Function Injection,
Content Based

 23

These attack patterns can be used discover potential security defects.

Developer Guidelines and Checklists
Secure software development guidelines are statements or other indications of policy or
procedure by which developers can determine a course of action. Guidelines must not be
confused with processes or methods; they do not provide step-by-step guidance on how
to do something. Rather, they are principles that are useful to remember when designing
systems.

Some universal guidelines that are common across organizations such as Microsoft, SAP,
and also promoted by the Open Web Application Security Project
(http://www.owaspp.org) are listed here:

• Validate Input and Output

• Fail Securely (Closed)

• Keep it Simple

• Use and Reuse Trusted Components

• Defense in Depth

• Security By Obscurity Won't Work

• Least Privilege: provide only the privileges absolutely required

• Compartmentalization (Separation of Privileges)

• No homegrown encryption algorithms

• Encryption of all communication must be possible

• No transmission of passwords in plain text

• Secure default configuration

• Secure delivery

• No back doors

Checklists help developers with lists of items to be checked or remembered. Security
checklists must be used with a corresponding process to be useful. For example, when
security code review checklists are used during code reviews, their use must be assured,
their effectiveness measured, and they must be updated based on their effectiveness.

Code checklists are usually specific to a particular programming language, programming
environment, or development platform. Sample security checklists from organizations
such as Microsoft and SAP are included in the on-line reference available with this paper.
References to other checklists are also provided.

Lifecycle Practices
Overview
This overview subsection is based closely on [McGraw 2004] appearing in IEEE Security
and Privacy magazine and is used with permission of the author. Most approaches in

 24

practice today encompass training for developers, testers, and architects, analysis and
auditing of software artifacts, and security engineering. Figure 3 specifies one set of
practices that software practitioners can apply to various software artifacts produced. The
remainder of this section identifies a number of existing practices and lessons.

Figure 3: Software security best practices applied to various software artifacts. Although the artifacts are
laid out according to a traditional waterfall model in this picture, most organizations follow an iterative
approach today, which means that best practices will be cycled through more than once as the software
evolves

Abuse
cases

Security
requirements

External
review

Risk
analysis

Risk-based
security tests

Security
breaks

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Requirements
and use cases

Code Test
results

Field
feedback

Design Test plans

Security requirements must explicitly cover both overt functional security (e.g.
cryptography) and emergent systems characteristics and properties. One practice is abuse
cases. Similar to use cases, abuse cases describe the system’s behavior under attack;
building them requires explicit coverage of what should be protected, from whom, and
for how long.

At the design and architecture level, a system must be coherent and present a unified
security architecture that takes into account security principles (such as the principle of
least privilege). Designers, architects, and analysts must clearly document assumptions
and identify possible attacks. At both the specifications-based architecture stage and at
the class-hierarchy design stage, risk analysis is a necessity—security analysts should
uncover and rank risks so that mitigation can begin. Disregarding risk analysis at this
level will lead to costly problems down the road. External analysis (outside the design
team) is often helps.

At the code level, use static analysis tools – tools that scan source code for common
vulnerabilities. Several exist as mentioned below, and rapid improvement is expected in
2004. Code review is a necessary, but not sufficient, practice for achieving secure
software because requirements, architectural, and design defects are just as large a

 25

problem. The choice of programming language also has impact and is addressed in its
own subsection below.

Security testing is essential and is addressed at some length in it own subsection below.

Operations people should carefully monitor fielded systems during use for security
breaks. Attacks will happen, regardless of the strength of design and implementation, so
monitoring software behavior is an excellent defensive technique. Knowledge gained by
understanding attacks and exploits should be cycled back into the development
organization, and security practitioners should explicitly track both threat models and
attack patterns.

Note that risks crop up during all stages of the software life cycle, so a constant risk
analysis thread, with recurring risk tracking and monitoring activities, is highly
recommended. Risk analysis is discussed at greater length below.

Programming Languages
The choice of programming language can impact the security of a software product. The
best programming languages are ones where all actions are defined and reasonable,
features such as strong typing are included to reduce mistakes, memory is managed
appropriately, and where the use of pointers is discouraged. A language that can be
formally verified, such as the SPARK subset of Ada and its associated verification tools
[Barnes], would be even better. Thus languages like C and C++ have inherent
characteristics that can lead to security vulnerabilities. While languages such as JAVA
and C# are better for developing secure software, even better choices exist. Note that the
use of a particular language does not guarantee or deny security: with care and substantial
effort secure applications could in theory be written in C, and insecure applications can
be written in JAVA and C#.

Tools

Several types of tools are available to support producing secure software. These range
from automated tools for verification and validation of formal specifications and design,
to static code analyzers and checkers. Information about automated tools for formal
methods is available at http://www.comlab.ox.ac.uk/archive/formal-methods.html. Some
better known code analysis tools are RATS (http://www.securesw.com/rats), Flawfinder
(http://www.dwheeler.com/flawfinder), ITS4 (http://www.cigital.com/its4), and
ESC/Java (http://www.niii.kun.nl/ita/sos/projects/escframe.html). The usability of static
code analyzers varies. For some, their output can be voluminous (although this may
reflect the poor practices used in writing the code), and the problems flagged can require
human follow up analysis. For example, here is an output from a static analysis tool. This
would almost certainly require a code review and maybe a design review to follow-up.

Input.c:5: High: fixed size local buffer
Extra care should be taken to ensure that character arrays that are allocated on the
stack are used safely. They are prime targets for buffer overflow attacks.

Tools used by Microsoft such as PREfast and PREfix [Bush], and SLAM
(http://www.research.microsoft.com) are helping reduce overall defects. According to
Microsoft, PREfix and PREfast have been very effective and caught about 17 percent of

 26

http://www.comlab.ox.ac.uk/archive/formal-methods.html
http://www.securesw.com/rats
http://www.dwheeler.com/flawfinder
http://www.cigital.com/its4
http://www.niii.kun.nl/ita/sos/projects/escframe.html
http://www.research.microsoft.com/

the bugs found in Microsoft's Server 2003 [Vaughan]. The Fluid project has also shown
promising results (http://www.fluid.cmu.edu/). Sun’s JACKPOT project
(http://research.sun.com/projects/jackpot/) and is another tool under development. A
number of additional tools based on compiler technology are expected to become
available in 2004.

Testing
Security testing encompasses several strategies. Two strategies are testing security
functionality with standard functional testing techniques, and risk-based security testing
based on attack patterns and threat models. A good security test plan (with traceability
back to requirements) uses both strategies. Security problems are not always apparent,
even when probing a system directly. So, while normal quality assurance is still essential,
it is unlikely to uncover all the pressing security issues.

Penetration testing is also useful, especially if an architectural risk analysis is specifically
driving the tests. The advantage of penetration testing is that it gives a good
understanding of fielded software in its real environment. However, any black-box
penetration testing that does not take the software architecture into account probably will
not uncover anything deeply interesting about software risk. Software that falls prey to
canned black-box testing – which simplistic application security testing tools on the
market today practice – is truly bad. This means that passing a cursory penetration test
reveals very little about the system’s real security posture, but failing an easy canned
penetration test indicates a serious, troubling oversight.

To produce secure software, testing the software to validate that it meets security
requirements is essential. This testing includes serious attempts to attack it and break its
security as well as scanning for common vulnerabilities. As discussed earlier, test cases
can be derived from threat models, attack patterns, abuse cases, and from specifications
and design. Both white-box and black box testing are applicable, as is testing for both
functional and non-functional requirements. An example tool that uses formal method
concepts to aid testing is JTest™, a Java testing tool. The user writes pre- and post-
conditions and invariants just as in formal methods using program proofing techniques.
But, these are inserted by the tool as assertions and used to guide the automatic
generation of tests that attempt to break them. JTest™ also attempts to generate tests to
raise every possible exception.

The Fuzz testing method is another method of interest. Fuzz testing is a black-box testing
method that tests software applications with random input. The method has proven
effective in identifying design and implementation defects in software. More information
about this testing method is available at http://www.cs.wisc.edu/. Another similar method
that has proven effective for testing is the Ballista method. The Ballista method is an
automated, black-box testing method that is particularly suited to characterizing the
exception handling capability of software modules. More information about this testing
method is available at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/edrc-
ballista/www/. Once again, failure to pass this style of testing should reflect troubling
oversights.

 Ballista is a registered trademark of Carnegie Mellon University.

 27

http://www.fluid.cmu.edu/
http://research.sun.com/projects/jackpot/
http://www.cs.wisc.edu/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/edrc-ballista/www/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/edrc-ballista/www/

System, user, and acceptance testing provides an invaluable source of data for software
process improvement. Security defects found in tests are defects that escaped the entire
software development process. They can be used to find, fix, and prevent future design
and implementation defects of the same type, as well as similar defects elsewhere in the
software. This topic is discussed further in the Qualification section of this report.

Risk Management
One might say that the most secure computer is one disconnected from the network,
locked in a room, with its keyboard removed. Of course, such a machine is also useless.
Since perfect security appears to be an unattainable goal with today’s technologies,
producing secure software becomes a question of risk management. Security risks must
be identified, ranked, and mitigated, and these risks must be managed throughout the
software product lifecycle.

Risk management involves threat identification, asset identification, and quantitatively or
qualitatively ranking threats to assets. One ranking dimension involves determining what
would happens if the risk came true. What would be the impact in terms of cost,
schedule, loss of reputation, legal exposure, etc? The other ranking dimension considers
the probability of the risk occurring: is the threat easily exploitable? Do many potential
exploiters exist? How much effort would it take for someone to exploit the threat?
Ranking risks by combining (multiplying) the impact and the probability is the common
approach – indeed these are the two elements in most definitions of risk.

During requirements and design tradeoffs must be considered and addressed from a risk
management perspective. Stated simply:

• User functionality – Resources required and remaining for security effort

• Usability – Security is a hassle

• Efficiency – Security can be slow and expensive

• Time to market – Internet time is hard to achieve while achieving security

• Simplicity – Everybody wants this but security can add complexity

• Quality takes care – Quality is necessary for security

Considering the nature and level of threats and applying risk management allows these to
be approached rationally.

A technical method that can be used for risk analysis is threat modeling, described earlier
in this report. Once the risks have been identified and ranked, design, implementation,
and test decisions can be made to manage the risks.

Risks may be mitigated by the selection of various controls (specify, verify, design, and
validate countermeasures to the risk), or risks may be transferred (purchase insurance
against certain risks). Risk management uses a combination of these methods.

Other Considerations
There are other considerations common to most secure software development efforts.
Some of these considerations are listed below:

 28

Authentication, Authorization, Session Management, and Encryption

Authentication and authorization are common problems that face designers of secure
applications. Authentication involves verifying that people are who they claim to be. The
most common way to authenticate involves the use of a username and a password. Other
authentication methods include biometric authentication based on voice recognition,
fingerprint scans, or retinal scans. The problems faced during authentication include
encryption, transmittal, and storage of passwords, session re-playing, and spoofing.
Authentication should be handled using standard protocols and components where
available, and requires special expertise to implement.

Authorization is about determining what resources an authenticated person has access to.
There are standard authorization techniques available that should be used where possible,
such as role-based access and group permissions. Applications should be deeply
concerned with privilege management, especially the accumulation of excess privileges
over time.

Closely related to authentication and authorization are impersonation and delegation,
which allow one server entity such as a web server to assume the identity of a client
entity such as the user of web browser. The main problem faced during impersonation
and delegation is establishing trust in the server. Clients, therefore, should authenticate
servers and limit the server’s ability to act on their behalf.

Session management is of special concern. The HTTP protocol is a stateless protocol.
Web servers respond to each request from a client individually, with no knowledge of
previous requests. This makes interaction with users difficult. It is up to application
designers to implement a state mechanism that allows multiple requests from a single
user to be associated in a “session”. Poor use of session variables to manage state can
lead to security vulnerabilities.

Finally, encryption is of special concern for secure applications. Two areas of concern
here are to use well-known encryption algorithms (no home grown ones), and the
problems with key management. Entire books have been written on the subject, so all we
will say here is that cryptography should be left to experts, application designs must
consider what information needs to be encrypted when, and applications must properly
implement sound key management practices.

An example of authentication, authorization, session management, and encryption in use
is to maintain the integrity of a database. Any modification request must be: provable as
coming from the identity claimed, provably unchanged in transit including not destroyed
or duplicated, of legitimate content type, part of a legitimate identity-action pair (have
right privileges), applied as part of an acceptable sequence of actions, responded to with a
response that is provable to the requester to have come unchanged from the database
management system, and the database state must remain unchanged except by controlled
legitimate actions.

Accountability
With the development practices in common use today, it is difficult to distinguish
between malicious code and the defect-ridden code that is normally produced. Although
malicious code stands out and has a better chance of being identified when high-quality

 29

software is being produced, additional steps are needed to ensure that no software
developer inserts malicious code intentionally. Without careful, rigorous control of and
accountability for millions of lines of code, it is not easy to identify which lines of code
have been added when and by whom. Code Signing could help make this possible. Every
developer would use their private key to sign the code they produce. Therefore, every
change to the software could be identified, analyzed, reviewed, and tested, instead of
being put into the application without effective accountability.

Developers tend to have universal rights and authorized access to all parts of their
development systems. This could lead to intentional or unintentional misuse or change of
security functions or other features. Access to critical components or subsystems should
be controlled. For example, nobody other than a knowledgeable person should be allowed
to implement cryptographic algorithms (of course, abiding by the required laws of export
and import restrictions on cryptographic software).

Code Signing and Code Access Authorizations are practices that may promote
accountability, but do not address the issue of malicious code by themselves [McGraw
and Morrisett].

Modifications and Patch Management
The Patch Management subgroup of the Task Force on Security across the Software
Development Lifecycle is addressing issues relating to patch management. The Process
Subgroup is more concerned with the process used for modifications and patch
management.

As patches often get distributed as downloads from the Internet, the download process
itself must be secured with all appropriate methods to guarantee integrity and
authenticity.

As with development, the change process to the software system must be secure.
Implementing patches, adding new features, or implementing new applications within a
system requires that software be added or modified. Most organizations have concurrent
instances of a development system, a test system, and a production system. Configuration
and change control across all these systems becomes critical if changes are to be reflected
in all instances of the system, starting from the development system, to the test system,
and to production systems.

Use of Third-Party Software
The use of third-party software (COTS or open-source) poses some difficulties. Although
there is no significant evidence of third-party software being less or more vulnerable, a
process developing secure software must carefully consider the proper use of third-party
software. Users of third-party software must have some means of identifying and
categorizing the trust level of the component they are about to use. The best means of
doing this would be to demand that third-party software be developed using secure
development processes, and be validated using security validation methods.

Third-party software should also include a disclosure of security assumptions and
limitations. A single 'security level' or 'minimum security' is very difficult to define for a
software component that is being deployed in different environments with different

 30

security levels. A key piece of data to have when deciding one's level of confidence is to
assess the quality and content of documentation of security limits and security
assumptions. This is especially important for third-party software, but really applies to all
software – customers should request it.

 Management Practices
The importance of the role of management in ensuring that their organizations address
security throughout the software development lifecycle cannot be overstressed. Partially
for this reason, the National Cyber Security Taskforce for Corporate Governance has
been formed “to consider cyber security roles and responsibilities within the corporate
management structure, referencing and combining best practices and metrics that bring
accountability to three key elements of a cyber-security system: people, process, and
technology.”

Since another taskforce is addressing this issue, the discussion here is limited to a listing
of specific management practices.

• Establish organizational policies for secure software development. Policies help
with codifying an organization’s commitment to secure software development.

• Set measurable improvement goals for developing secure software. Since
improvement without measurable goals is difficult, it is important for
management to set specific, measurable goals. Examples of specific goals are to
reduce vulnerabilities in delivered software by 50% as measured by number of
patches released, or number of vulnerabilities reported.

• Establish leadership roles for security at the organization and at the project level.
Some organizations have had success with roles such as Security Engineer,
Security Analyst, and Security Architect. The Team Software Process for Secure
Software Development (TSP-Secure) has a defined role of a Security Manager on
each development project. The responsibilities of a security manager change
during different phases of the software development lifecycle, and the security
manager may not be the same person throughout the software development
lifecycle, but this is the person who always focuses on security for that project.

• Provide resources and funding for needed training in software engineering
practices, and security practices.

• Provide an oversight function through quality and security reviews of projects.
Encourage reviews by external software security experts.

Recommendations for the DHS

Short Term
The DHS should:

• Provide incentives for using software development processes that can measurably
reduce software design and implementation defects.

• Encourage and fund research to determine the effectiveness of existing best
practices in measurably reducing software security vulnerabilities.

 31

• Set quantifiable goals for reducing overall software defects and for reducing
overall software security vulnerabilities.

• Encourage adoption of those practices deemed immediately useful in producing
secure software.

Mid Term
The DHS should encourage and fund research:

• For secure software development processes that can measurably reduce software
security vulnerabilities.

• To identify, document, and make available new security best practices that can
measurably reduce software security vulnerabilities.

• To encourage evaluation of those practices that seem highly promising in
producing secure software.

Long Term
The DHS should encourage and fund:

• Education and training in best processes to develop secure software.

• Education and training in best practices for development of secure software.

• Research into those practices that have early indications of being promising in
producing secure software.

 32

Qualifying Processes and Practices as
Producing Secure Software

Purpose
To ensure that future software processes and practices consistently produce secure
products, candidate processes and practices and the products they produce must be
analyzed and tested to verify and validate that, when properly used, these processes and
practices can be relied upon to produce secure products. This section describes the issues
involved in such a qualification effort together with a proposed way to establish short,
intermediate, and long-term efforts to provide a suitable software process and practice
qualification program.

The Problems in Qualifying a Process as Producing Secure Software
For the United States cyber foundation to be secure, the software that supports that
foundation must be secure. This requires that the processes and practices used to produce,
enhance, and maintain that software be capable of producing secure software and that
these processes and practices be properly used. When this report speaks of “secure
software” it means that there is high confidence but no guarantee that the software is
secure. Verifying that a software process can consistently produce secure software is
challenging for at least seven reasons.

1. Security is a landscape of evolving threats. What may appear to be secure
software today could be shown to be insecure tomorrow.

2. While tracking the ability of a software system to withstand attack
provides some confidence that it is secure, there are no generally accepted
ways to prove that it is. With current methods, we can only prove that it is
not secure.

3. The number of tolerable security defects is quite low and verifying that
fewer than such a small number of defects exist in a large program is
extremely difficult.

4. Even if secure software had been initially developed, its deployment
enhancement, repair, and remediation must not compromise its security.
No generally accepted ways exist to verify that such software has retained
its security properties.

5. Even after one or more processes had been shown to produce secure
software, these processes and practices must remain effective when used
by many people in many different software organizations and
development environments.

6. An extensive and extended data collection effort would be required to
obtain statistically significant evidence that a process consistently
produces secure software.

 33

7. The methods for qualifying the capabilities of the likely number of
required processes and organizations would necessarily be time
consuming and expensive.

The Suggested Verification and Qualification Strategy
To qualify a process as capable of producing secure software, that process must be used
to develop, enhance, and/or remediate multiple software products and then those products
must be tested or otherwise examined to verify that they are secure. However, while as
mentioned in the Practices section a number of tools exist and they are expected to
improve substantially, no available tools and techniques that can exhaustively test or
otherwise analyze large-scale software products that by themselves can establish with
high-confidence that no security problems exist in the specifications, design, or code.

A potential alternative to testing would be to have knowledgeable professionals inspect
the software to attempt to ensure that it had no security defects. Inspections are generally
used during development of new or enhanced systems and are highly effective. However,
extensive inspections are not generally practical as a way to remediate the large body of
existing software because of the large scale and great volume of the software currently
available and the severe shortage of software professionals capable of conducting such
security inspections. While this inspection approach cannot quickly or economically
produce the high level of confidence desired, it is the best alternative available today.

The inspection problem is best illustrated by considering the enormous volume of
material to be reviewed to verify that the design and implementation of even a moderate-
sized one million line-of-code (MLOC) program is secure. Just to achieve the level of
security in the best of today’s widely-used software, software professionals would have
to study 40 pages of source program listings for every 1 KLOC program module and miss
at most one single security design or implementation defect. To achieve a ten-time
security improvement, or a level of 100 such defects in a 1 MLOC program, inspectors
would have to miss at most one such defect in 400 pages of source listings. However,
products with 100 security defects would not likely meet any reasonable definition of
security. Furthermore, for a level of 10 defects in a 1 MLOC program, the inspectors
would have to miss at most one such defect in 4,000 pages of source program listings.
Since this level of quality does not seem widely achievable, the inspection approach does
not appear to be generally practical as a widely used verification method for legacy
systems. To the extent that the security-critical code can be so designed that it is isolated
into much smaller code clusters, the inspection strategy becomes more practical.

The third alternative approach is to have development teams and professionals measure
and manage their software processes and products so that they improve to where the
likelihood of having a single design or implementation defect in each 1 KLOC program
module is less than 1 in 100. This approach is currently being used on a limited scale and
suitably trained groups now routinely use these methods to produce software with an
average of about 60 discovered functional design and implementation defects per MLOC
or 6/100 defects per KLOC [Davis]. One third of these teams have had no defects found
in their delivered products. Initial data also show that formal methods are achieving
comparable quality levels [Hall 2004]. While these data are mostly for functional defects,

 34

the methods could be equally applicable to security defects, as long as the producers were
able to recognize security design and implementation defects.

Security defects, however, concern security properties such as the confidentiality and
integrity of a system and these generally emergent properties are not always detectable by
looking at parts of the system. Current software quality methods were generally
developed for functional defects that tend to be feature-oriented and somewhat localized.
Thus, special analysis techniques are required and the best of these can involve
disciplined development, testing, and evaluation processes and formal specification and
design methods.

In light of these facts, the suggested verification strategy is as follows:

1. Have the developers and maintainers of candidate secure software products use
processes and practices that have been shown to consistently produce low defect
software.

2. To consistently follow such processes and practices, all producers and maintainers
of such software must be adequately trained and so managed, supported, and
coached, so that they can consistently maintain the required level of personal and
team discipline.

3. These development teams and professionals must measure and manage their
software processes so that they improve to where the likelihood of having a single
design or implementation defect in each 1 KLOC program module is less than 1
in 100.

4. At the specification and design levels use the best available methods for
ascertaining the emergent security properties of the software.

5. The development teams must track and analyze every security defect found in
every product produced by every team member to understand why and how that
defect was injected, where similar defects might remain in the product, and how
to most efficiently find and fix all such defects.

6. When these candidate secure products are fielded, all newly-discovered
vulnerabilities must be tracked to the product versions and the modules where
they were found, the practices used to develop those modules must be identified,
and the flaws in the process that permitted those defects to be entered and/or
missed must be identified and a process fix developed and analyzed to ensure it
has no negative impacts elsewhere. The teams and team members then must
adjust their production processes both to prevent and to find all similar future
defects.

7. The process includes how security defects are repaired and the fix rapidly
disseminated to the product users, involving the immediate defect and all others
of a similar nature that are identified as part of the process.

8. To ensure the continued integrity and increasing merit of qualified processes and
practices, process data must be gathered and retained on every qualified use of the
process and these data must be used by designated process reviewers to qualify
these products. The resulting qualification records must include data on the

 35

producers; who used the process, how they used the process, how they were
trained and prepared to use the process, and the environment in which the process
was used. Data must also be available on the steps used to produce and verify the
quality and security of the product and on the training and qualification of the
analysts, reviewers, and testers. These records must be maintained so that, should
a qualified secure product be subsequently found to have security problems, the
proper actions could be taken.

9. If it was found that the process was improperly used, the training and qualification
of the producers, coaches, and designated reviewers should be assessed and
adjusted. If improper process use was a persistent problem, the records of the
producers, coaches, and designated reviewers should be reviewed and actions
taken to revoke any qualifications that were no longer appropriate. Action should
also be taken to review the process history to decide whether the process could be
adequately repaired or if it should be disqualified.

Since this strategy must initially be
implemented with unqualified processes and
practices, various levels of security
qualification must be used. This has been the
case with the Common Criteria whose
experience should be carefully reviewed for
lessons including the reasons for the reputed
delegable meaningfulness of its Levels 1-4
and for its reputed meaningfulness at higher
Levels 5-7. The two most basic levels could
be as follows.

The Initial Qualification Security Level The
software process and its resulting products
meet all (or most of) the requirements defined
in this document and one or more of the listed
best practices were used in the development
work. All initial security qualifications should
be for a specified and limited time and the
qualification should lapse if data are not
provided to demonstrate the effectiveness of
the process for producing secure software.

The Fully Qualified Security Level The
software process and the products it produces
meet all of the requirements listed in this
document and have been successfully used in a sufficient number of cases to provide a
high level of confidence that the process produces secure software.

Deciding One’s Level of
Confidence in a Product’s Security
Consider all the evidence including:

1. The quality and history of the
people who produced it

2. The characteristics and history of
the kind of process used to
produce it and its qualification
level

3. The environment in which it was
produced

4. Data on the quality and fidelity of
use of the production process for
this piece of software

5. Characteristics of the software
itself and results of tests and
analyses of it

6. Data on the execution history of
the software itself

7. Data on the design security
assumptions and security limits of
the piece of software

An example, in addition to the Common Criteria, is BITS – a non-profit industry
consortium of 100 of the largest financial institutions in the United States that focuses on
issues related to security, crisis management, e-commerce, payments, and emerging
technologies. Aware of antitrust restrictions, BITS developed voluntary security criteria

 36

for software providers and a mechanism to test those products to certify compliance
offering a product certification mark for those products that met the defined criteria. The
BITS Product Certification Program has had limited effect in terms of changing the way
the software industry develops more secure software. After having criteria available in
2000-2001, only two products are listed as being certified as of March 2004.
Nevertheless, the question arises: could DHS and other government agencies support
sector product certification efforts to permit critical infrastructure sectors to have security
requirements without violating anti-trust restrictions?

As experience is gained and as the need arises, additional qualification levels will almost
certainly be needed.

In principle, the strategy enumerated here is to improve the best existing processes, test
and evaluate the products produced, qualify the processes that produced the products, and
continue to improve the processes. The box on the right lists some of the factors to
consider in evaluating the security of a software product. With current technology, one
should not depend on any single factor, but rather consider the combined implications of
all of the available evidence.

Promising Qualification Techniques
In addition to the steps above, complementary means exist for developing and using
qualification evidence. Four areas currently appear sufficiently promising to warrant
further study: evaluating available practices, surrogate measures, stress testing, and
formal security proofs.

Evaluating Available Practices
As described elsewhere in this report, several security processes and practices are
currently available that would, if widely used, significantly improve the security of
software products. There are also several promising practices that appear likely to
substantially improve the security of software products. To facilitate widespread use of
the more effective of these processes and practices, those organizations that own and
support software products that are currently under widespread security attack should test
the available and most promising security practices listed in the practices section of this
document. To evaluate these test results, these organizations should establish
measurement programs that are consistent with that described in the Suggested
Verification and Qualification Strategy section of this report. As data on these security
tests become available, the results should be published and distributed and the DHS
should urge software organizations to adopt those practices that are shown to be effective.

Surrogate Product Measures
With no way currently known to directly measure the security of a software product,
identifying one or more surrogate measures may be possible. A surrogate measure of a
product or process would produce data that correlated with the security properties of the
products produced with the process. A potential example surrogate measure would be the
number of selected types of design and code defects found during that product’s system
testing. Since it has been shown that a product’s system test defects correlate with the
number of defects found in that product by its users, it is possible that the defects
responsible for security flaws would also correlate at least with selected types of system

 37

test defects [Humphrey, page 171]. With the growing volume of data on product security
vulnerabilities and the potentially large volume of data available on the software
production process, with proper controls for variation of circumstances such a surrogate
correlation could likely be quickly ascertained.

Product Security Testing
A number of tools have been developed for static and dynamic security testing of
software products. While no such tools are known to comprehensively identify all
security vulnerabilities in software products, they could produce surrogate data that might
correlate with at least some categories of vulnerabilities. The software industry should
test any such potentially promising tools to see if they could provide surrogate data of
this type.

Formal Security Proofs
Another possibility is formal analysis and proofs regarding security properties. This
approach is advocated in the Common Criteria and long in use in the research
community. It is rare but not unknown in software production practice [Hall 2002]. While
formal techniques for dealing with security properties exist and should be used where
appropriate, these methods are similar to many other software methods in that their
effectiveness depends on the skill and discipline of the practitioner.

Recommendations for Department of Homeland Security on Software Process
Qualification
While a completely satisfactory solution to these verification and qualification problems
will likely not be available for several years, there are a number of immediate steps that
could be taken to significantly improve the situation. These steps are described in the
following sections on short-term, intermediate-term, and long-term recommendations.

Short-Term Recommendations
The three short-term recommendations are:

The DHS should issue a recommendation that all organizations developing
software adopt as rapidly as possible those practices currently deemed in this
report to be immediately useful for producing and deploying secure software.

The DHS should further request that those organizations that have software
products with a significant annual volume of vulnerability discoveries conduct
measured tests of those security practices deemed to be immediately useful and
highly promising. This testing should follow the first eight steps listed in The
Suggested Verification and Qualification Strategy section of this report. While all
organizations should be encouraged to test the suggested methods, only those with
a significant vulnerability history would likely have the data necessary for a
statistically sound before-and-after verification of security practices.

Organizations with suitable data should be asked to work with USCERT to
determine if the number of selected types of system test defects in a product are a
useful surrogate measure for the number of security vulnerabilities subsequently
found in that product.

 38

Intermediate-Term Recommendations
The three intermediate-term recommendations are:

The DHS should launch a measurement and evaluation program to determine if
any available tools or testing methods could be used to generate surrogate data
that indicate the relative security of a software product.

The DHS should assess the rate of improvement in the security of the US cyber
infrastructure and work with the US software industry to define the measures and
establish measurable security goals. It should then track performance against
these goals on an annual basis.

The DHS should initiate a qualification program to measure and evaluate software
products and to qualify the software practices, processes, people, and
organizations that produced them as capable of producing secure programs. It
should also establish the criteria and practices to qualify program products as
having met all of the conditions to be qualified as secure. This program should,
over time, establish one or more qualification levels that are consistent with the
degree of verification available and achieved by the qualified entities.

Long-Term Recommendations
The three long-term recommendations are:

The DHS should track and assess the measurement and analysis programs
recommended in this report and qualify those processes and methods found to be
highly effective at producing secure software products.

The DHS should encourage and fund research to identify, document, and make
available further security software production processes, testing tools, and best
security design and implementation practices. Several such potential processes
and best practices are listed in the practices section of this report.

The DHS should encourage broader coverage of security issues and practices in
all computer-related academic teaching and research programs.

 39

Organizational Change
For organizations desiring to improve their ability to produce secure software, this
section discusses the many issues involved in organizational change and the body of
knowledge and techniques addressing them. As previously stated, the cost in terms of
resources and time, and the required organizational courage and discipline needed, can be
discouraging. Undoubtedly, however, the capability to produce secure software
necessitates an organization introduce, use, and continually improve software processes,
technology, practices, and products. Consequently in this section, we address the issues
involved in such organizational change.

There is a wealth of scholarly and popular press literature describing the challenges of
organizational change, – a search of Amazon.com for “organizational change” yields
over 32,000 results. These books describe techniques and experiences – the costs of
failed change efforts and the considerable payoffs from successful ones. Such lessons
learned are a good place to learn about organizational change, but where does one start
among these 32,000? What we present here is a summary of some of the more notable
and proven approaches to accelerate the adoption and improvement of the processes and
practices and recommended references related to them.

Two conditions must exist before organizational change.

1. Commitment to the change

2. Ability to change

Without both, even a great technology will not be adopted. On the other hand, once the
underlying issues are understood, people, teams, and organizations often participate
favorably in a well crafted approach. In the following sections, we layout the issues and
discuss some of the “right” approaches. The interested reader can find a wealth of
detailed information in the references provided below.

What to expect
Figure 4 depicts a typical cycle of change for an organization undergoing the introduction
and use of new processes or practices [Weinburg]. The phase “Old Status Quo” in Figure
4 denotes the situation prior to attempted change. Here, processes are working – for good
or bad. In the scenario of major process improvement that we are discussing here, a new
stage, “Instability” begins when someone introduces a novel idea for improvement,
involving significant changes in day-to-day practices and behaviors. If it does not handle
this stage appropriately and carefully, an organization is likely to abandon its
improvement effort. The effort needs visible support by management and a team of
change agents with the skill for steering the effort through its ordeals. Key activities of
the change agents and management in this stage include listening, demonstrating
empathy, being helpful, and providing plentiful amounts of consistent information
addressing individuals’ and groups’ concerns. Without these, individuals – and
organizations – can easily return to the “Old Status Quo”. Management can easily see
efficiency being adversely affected as people struggle to learn and incorporate new

 41

practices and processes. They must recognize this, however, as a natural side effect of the
initial learning process – the performance payoff will be realized in later stages.

Performance

Old
Status
Quo

Instability

Integration &
Practice

New
Status
Quo

Time

Figure 4 -Representative cycle of organizational change showing how performance can be
impacted by the introduction and use of new practices

Organizations that make it through “Instability” move into a stage of performance known
as “Integration and Practice”. With this stage, performance begins to improve, but
patience is still essential. Personnel have overcome their initial uncertainties, and start to
improve their use of the new process or practice. Management needs to ensure an
environment for continuing improvement with people allowed to not know everything
about the new process or practice, and their questions encouraged and answered.

Finally, the organization moves into the stage of the “New Status Quo”. Practice brings
still more improvement, appropriate information flows through the organization, and
overall, the new practices and processes are in place and working well. To optimize
performance, management must grant people permission to be honest, and to explore and
improve their newly acquired skills. After a period of stability and incremental
improvement the organization will be ready to undertake its next major change.

These stages clearly show what all experienced change agents know – change is not
instantaneous except in the most trivial of cases. Significant improvement comes from
acceptance by individuals and significant change in their day-to-day behaviors, and
significant change takes time, persistence, flexibility, and special skills.

 42

Tools for Change
Successful change agents rely on a body of knowledge and a suite of techniques for
supporting the movement of the organization through the stages of Figure 4. The change
agent’s toolkit should include, at a minimum, a thorough understanding of the following
components of this body of knowledge and insight into how to use them:

• Adopter type categories and how to use them in organizational change [Rogers]
[Moore 2002]

• Characteristics of adoptable technologies [Rogers]

• Stages of learning and commitment [Patterson]

• Factors of adoption [Fichman]

• Value networks [SEI]

The basic premises underlying these concepts are

• People respond differently to change

• Successfully adopted changes tend to exhibit a similar set of characteristics

• Learning and commitment to new practices follows a predictable pattern of stages

• People move through these stages at different speeds

• Change involves a network of influencers and stakeholders each of whom must
individually understand and be prepared to support their role in the process.

Several additional references are included for those that wish to explore further.
Introductory books are [Kotter] and [Beitler]. Intermediate books are [Christensen]
[Moore 1999] and [Fench]. [Senge] is more advanced but still accessible. Coming from
the study of technology transfer but quite encompassing, [Rogers] is a classic.

Organizational change is challenging, but with the right skills and approach to the change
process the pay off can be quite substantial – and the same can be true along the path
towards secure software.

 43

Recommendations
In the prior sections of this report, we noted the problem of producing secure software is
both a software engineering problem and a security-engineering problem. The principles
for producing secure software have been known for some time. Many people involved
with producing secure software are aware of the principles, as well as the practices
described in this and other documents. Why do people not follow these principles and not
use these practices consistently? In addition to principles and practices, a need exists for
operational processes that help apply these principles in practice, provide a supportive
infrastructure and environment, and a measurement system to manage and control both
security pursuing processes and secure products.

As the Software Process Subgroup considered the seemingly unconnected facts on the
requirements for and the capabilities of processes to produce secure software, a path to be
recommended emerged. The Software Process Subgroup has confidence that following
this path could lead to producing more secure software, and as a byproduct, more reliable
software. The recommendations that constitute the path are highlighted in boldface. The
recommendations are clustered according to the expected timing of their implementation
into short-term, mid-term, and long-term recommendations.

Short-Term Recommendations
First, a very low design and implementation defect rate software production process is a
necessity. As described earlier in this report, such processes exist today. Not surprisingly,
they tend to have characteristics that are substantially different from the software
development processes in common use. The answer is not to just keep doing more of the
usual. Therefore, to start along the path, every organization desiring to produce secure
software, whether a software vendor, an organization developing software for internal
use, or developing open source software, should use a process that can predictably
produce software with very low specification, design, and implementation defects –
less than 0.1 specification, design and implementation defects per thousand lines of
new and changed code delivered.
Given a process that produces high quality software, the next recommendation is to make
risk management central to decision making. This requires security expertise that
covers all security aspects of the system under development. Since the security expertise
must be broad and deep, expert help may be needed to identify and manage security risks.

The next areas of concern are product specification and design. Security must be an
integral consideration during product specification and design. Apply formal methods to
specification and design of security aspects. Define the security properties of the
software. Analyze and review specifications and designs for security. A key element
of making this feasible is to design the software so security critical aspects are
concentrated to a limited portion of the software. The design should be as simple as
possible – possibly sacrificing efficiency – and must be restricted to structures and
features that are "safe" and preferably can be analyzed. The design must not assume that
the software cannot be broken and should ensure defense in depth or tolerance. This
and other security principles should be given close attention.

 45

A programming language with significantly fewer possibilities for mistakes than C
or C++ should be used where possible. The programming language should be fully
defined, catch all possible exceptions, and have other mistake reducing characteristics
such as strong typing – and preferably safe typing.

Static analysis should be used to find known kinds of coding defects. Over time this
analysis should become compulsory.

Security testing must be performed including serious attack efforts. Testing should
take advantage of formal specifications and design.
Using suitable consideration, software producers should also adopt other practices
deemed useful in this report.
Lessons can be learned from the characteristics and causes of security vulnerabilities
found throughout development, testing, and after release. Organizations can improve
from their own and from others’ experiences, good or bad. The products produced and
process used must be constantly monitored and root causes of defects determined
and reduced.
To have a reasonable chance of success, top management, indeed management at all
levels, must have a sustained and focused priority of producing secure software.
Adequate resources must be available, outside expertise must be there when needed, and
a quality culture must be sustained. Trained, motivated, persistent, disciplined, proficient
and trustworthy personnel follow an agreed to plan and measure progress.

The recommendations so far mainly address development of new software. Just as
important are practices and processes for maintenance, fixes, and patch release and
management. Of particular concern are configuration management processes. Changes to
existing software should follow a rigorous change and configuration control process.
Another area of concern is the use of COTS or open-source software. There are no
significant studies that show open-source and COTS software has fewer or more security
vulnerabilities. Very often, purchasers and administrators of a software product are not
aware of the use of third-party software in the products they are using. Thus, they may
not know that they have a security issue if the producers of the third-party software issue
a warning or patch. In addition, producers of a software product may rely on the quality
of third-party software without ensuring the process that produced it was adequate.

Thus software vendors should require that third-parties developing software adopt
processes and practices deemed useful in this report, or software vendors must
validate third-party software before incorporating it into their products. At a
minimum, they should disclose what third-party software, including open source
software, is used in their product.
Software vendors should produce a security guide or document listing the current
assumptions and level of security features used such as password enforcements as well as
recommendations on how this should be configured or could be possibly enhanced.

Finally, given the short amount of time that this taskforce had to write this report, only a
limited number of participants could be reached to provide input – even within the

 46

organizations involved. Certainly, more knowledge and experience exists and should be
utilized.

Thus the DHS should

• encourage every software organization, whether a software vendor, an
organization developing software for internal use, or developing open source
software, to adopt as rapidly as possible processes that produce software that
has almost no specification, design, and implementation defects

• encourage software organization to incorporate in-depth security expertise in
their software development lifecycle

• request that those organizations that have software products with a
significant annual volume of vulnerability discoveries conduct measured tests
of those security practices deemed to be immediately useful and highly
promising.

• ask organizations with suitable data to work with USCERT or other entity
such as IT-ISAC to determine useful surrogate measure for the number of
security vulnerabilities found in that product after product release.

• identify additional individuals and organizations working on processes to
produce secure software, and request they review this report and suggest
enhancements.

Mid-Term Recommendations
For many, the short-term will not be enough time to achieve adequate levels of security.
Software producers should continue to relentlessly improve the security of their products
and their processes with emphasis on specification and design. Much current software
will never have good security properties without substantial redesign. Software
producers must recognize systems with unacceptable architectures and designs and
re-architect and redesign them with proper characteristics for security, using
quality software development processes.
This report has proposed the requirements for a process for producing secure software, as
well as qualification and verification of both the process used to develop a product, as
well as the product itself. However, research and experience data are needed to further
validate these, as well as to get knowledge about the appropriateness of different
methods.

The DHS should launch a measurement and evaluation program to determine
effectiveness of secure software development processes, leading to certification of
processes deemed to be capable of producing secure software.

The DHS should ask USCERT or other entity such as IT-ISAC to work with
software producers and others to evaluate process and practice benchmarks to
establish a baseline against which improvement could be measured.

The DHS should assess the current state of the US Cyber software infrastructure,
work with the software industry to establish measurable security goals on an annual
basis, and track performance against these goals.

 47

Long Term Recommendations
Longer term recommendations all involve the DHS, and have been categorized as
follows:

Certification
Certification programs like Common Criteria and ITSEC to some degree address
verification of released software. Levels 5, 6, and 7 of the Common Criteria have a
desirable emphasis on showing the design provides the desired security properties. It
could be said that they even verify a subset of the software process as making use of
methods deemed to produce lower defect software. However, the fact remains that these
levels are rarely used and security incidents are increasing, not decreasing.

Thus the DHS should track and assess the measurement and analysis programs
recommended in this report and the DHS should initiate certification of those
processes and methods found to be highly effective at producing secure software
products.

Education and Training
Today, most universities offering courses in security tend to focus on research oriented
subjects such as cryptography, and concentrate mainly on the theory of security
properties such as confidentiality and integrity. While this is good for future researchers,
more emphasis is needed to train and educate at the practitioner level. Even programs that
focus on the practitioner, such as those offered by some community colleges, are
sometimes hit-and-miss. For example, buffer overflow prevention might or might not be
taught in a programming class. A holistic approach to secure software development for
practitioners is rarely found.

The Software Process Subgroup endorses the Education Subgroup recommendation that
the DHS and others should encourage and fund universities teaching computer
science or closely related subjects to offer courses and do research in Secure Software
Development Processes. It should particularly move to enhance existing programs in this
area. Analogous to medical schools where practicing medical doctors teach medical
students, software security experts and practitioners should help teach computer science
and software engineering students. These teachers could be recruited from organizations
and companies using certified processes to develop secure software.

Accountability
The DHS should work with selected software producers to conduct experiments in
implementing code-based authorizations. The purpose of the experiment would be to
determine the effectiveness of limiting software developer ability to modify any part of a
system, thus limiting unintended or malicious damage to critical components of the
system.

The results of both experiments and experiences should be analyzed and should be
made publicly available.

 48

Evaluating New Technologies
Software technologies and applications have changed significantly in the past ten years
and will do so again in the next ten. Islands of systems within a company are now
connected via the Internet to systems of other companies. Firewalls, which were the
preferred method to protect systems from possibly malicious access live under the
paradigm that everybody within the firewall is “good” and everybody outside is “bad”.
With the possible increasing use of web services, this paradigm will vanish and will need
to be enhanced or replaced by web services security, perhaps involving SAML tickets
and XML encryption.

This is just one example of the rapidly changing landscape in software security. New
technologies will bring new opportunities as well as new challenges. New technologies
will almost certainly impose ever more stringent requirements on tolerable software
design and implementation defects and the processes to produce secure software. A
coordinated, sustained, ongoing effort will be needed to study the impact of new
technologies on software processes for producing secure software and on legacy
products.
Given the limited time the task force had to write this paper, it is almost certain that the
task force ignored other available development processes and best practices for producing
secure software. Therefore, the DHS should encourage and fund research to identify,
document, and make available further security software production processes,
testing tools, and security design and implementation practices, as well as other
development practices for secure software. Several such potential practices are listed in
the “Practices” section of this report.

Conclusion
A path exists towards producing secure software. A few organizations are quite well
along this path and show that traveling it is possible. The path involves:

1. Using an outstanding, exceedingly low-defect software engineering process and
relentlessly improving it while recognizing security properties are emergent
properties of systems and the central place of requirements and design

2. Incorporating sound, in-depth security expertise, practices, and technology

3. Providing the expert management to bring the resources, organization, discipline,
flexibility, and persistence

4. Continuing to relentlessly improve

The Software Process Subgroup has confidence that following this path will lead to
producing more secure software.

 49

References
[ACM] ACM Transactions on Information and System Security, Association for
Computing Machinery.

[Anderson] Anderson, Ross J., Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley and Sons, 2001.

 [Barnes] Barnes, John. High Integrity Software: The SPARK Approach to Safety and
Security, Addison Wesley 2003

[Beitler] Beitler, Michael A., Strategic Organizational Change Practitioner Press
International; January 17, 2003.

[Boehm], Boehm, Barry, and Richard Turner, Balancing Agility and Discipline: A Guide
for the Perplexed. Addison-Wesley 2003.

[Broadfoot] Broadfoot, G. and P. Broadfoot, “Academia and Industry Meet: Some
Experiences of Formal Methods in Practice,” Proceedings of the Tenth Asia-Pacific
Software Engineering Conference, Chiang Mai, Thailand, December 2003, IEEE
Computer Society.

[Bush] Bush, W.R., J.D. Pincus, and D.J. Sielaff, “A Static Analyzer for Finding
Dynamic Programming Errors,” Software Practice and Experience, vol. 30, June 2000

[Christensen] Christensen, Clayton M., The Innovator's Dilemma. HarperBusiness;
January 7, 2003.

[Common Criteria Part 1] Common Criteria Project, Common Criteria for Information
Technology Security Evaluation Part 1: Introduction and general model, Version 2.1,
CCIMB-99-031, August 1999.

[Common Criteria Part 2] Common Criteria Project, Common Criteria for Information
Technology Security Evaluation Part 2: Security Functional Requirements, Version 2.1.
CCIMB-99-031, August 1999

[Davis] Davis, Noopur, and Mullaney, Julia, “The Team Software Process in Practice: A
Summary of Recent Results,” Technical Report CMU/SEI-2003-TR-014, September
2003.

[Deming] Deming, W. Edward. Out of the Crisis. Cambridge, MA: MIT Center for
Advanced Engineering, 1986.

[Fench] French, Wendell L. Organization Development and Transformation: Managing
Effective Change. McGraw-Hill/Irwin; 5th edition July 13, 1999.

[Fichman] Fichman and Kemerer, “Adoption of Software Engineering Process
Innovations: The Case of Object Orientation,” Sloan Management Review, Winter 1993,
pp. 7-22.

[Goldenson] Goldenson, Dennis R. and Gibson, Diane L. “Demonstrating the Impact and
Benefits of CMMI”, Special Report CMU/SEI-2003-SR-009, The Software Engineering
Institute, Carnegie Mellon University, 2003

 51

[Hall 2002] Hall, Anthony, and Roderick Chapman, Correctness by Construction:
Developing a Commercial Secure System, IEEE Software, January/February 2002,
pp.18-25.

[Hall 2004] Hall, Anthony, and Rod Chapman. “Correctness-by-Construction.”. Paper
written for Cyber Security Summit Taskforce Subgroup on Software Process. January
2004.

[Hayes] Hayes, W. and J. W. Over, “The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineers.” CMU/SEI-97-TR-001,
ADA335543. Pittsburgh, PA: The Software Engineering Institute, Carnegie Mellon
University, 1997.

[Herbsleb] Herbsleb, J. et al. "Benefits of CMM-Based Software Process Improvement:
Initial Results." CMU/SEI-94-TR-013, Software Engineering Institute, Carnegie Mellon
University, 1994.

[Hogland] Hoglund, Greg, and Gary McGraw. Exploiting Software: How to break code.
Addison-Wesley, 2004

[Houston] Houston, I., and S. King, "CICS Project Report: Experiences and Results from
the Use of Z," Proc. VDM 1991: Formal Development Methods, Springer-Verlag, New
York, 1991.

[Howard 2003] Howard, M., and S. Lipner, "Inside the Windows Security Push," IEEE
Security & Privacy, vol.1, no. 1, 2003, pp. 57-61.

[Howard 2002] Howard, Michael, and David C. LeBlanc. Writing Secure Code, 2nd
edition, Microsoft Press, 2002

[Humphrey 2000] Humphrey, Watts S. Introduction to the Team Software Process,
Reading, MA: Addison Wesley, 2000.

[Humphrey 2002] Humphrey, Watts S. Winning with Software: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.

[IEEE] IEEE Security and Privacy magazine and IEEE Transactions on Dependable and
Secure Computing. Institute for Electrical and Electronics Engineers Computer Society.

[ISO] International Standards Organization, International Standard ISO/IEC 15408-
3:1999 Information technology – Security techniques – Evaluation criteria for IT
security.

[Jacquith] Jacquith, Andrew. “The Security of Applications: Not All Are Created
Equal.” At Stake Research.
http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf

[Jones] Jones, Capers. Software Assessments, Benchmarks, and Best Practices, Reading,
MA: Addison-Wesley, 2000.

[King] King, Steve, Jonathan Hammond, Rod Chapman, and Andy Pryor “Is Proof More
Cost-Effective Than Testing?” IEEE Transactions of Software Engineering, VOL. 26,
No. 8, August 2000.

 52

http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf

[Kotter] Kotter, John P., Leading Change. Harvard Business School Press; 1st edition
January 15, 1996.

[Leveson] Leveson, Nancy G. Safeware: System Safety and Computers, Addison-Wesley,
1995.

[Linger 1994] Linger, Richard. “Cleanroom Process Model,” IEEE Software, IEEE
Computer Society, March 1994.

[Linger 2004] Linger, Richard, and Stacy Powell, “Developing Secure Software with
Cleanroom Software Engineering”. Paper prepared for the Cyber Security Summit Task
Force Subgroup on Software Process, February 2004.

[McGraw 2003] McGraw, Gary E., “On the Horizon: The DIMACS Workshop on
Software Security”, IEEE Security and Privacy, March/April 2003.

[McGraw and Morrisett] Gary McGraw and Greg Morrisett, “Attacking Malicious Code:
A report to the Infosec Research Council”, submitted to IEEE Software and presented to
the Infosec Research Council. http://www.cigital.com/~gem/malcode.pdf

[McGraw 2004] McGraw, Gary, “Software Security”, IEEE Security and Privacy, to
appear March 2004

[Mills] H. Mills and R. Linger, “Cleanroom Software Engineering,” Encyclopedia of
Software Engineering, 2nd ed., (J. Marciniak, ed.), John Wiley & Sons, New York, 2002.

[Moore 1999] Moore, Geoffrey A., Inside the Tornado : Marketing Strategies from
Silicon Valley's Cutting Edge. HarperBusiness; Reprint edition July 1, 1999.

[Moore 2002] Moore, Geoffrey A. Crossing the Chasm. Harper Business, 2002.

[NASA] Formal Methods Specification and Verification Guidebook for Software and
Computer Systems: Volume 1: Planning and Technology Insertion. Available at
http://www.fing.edu.uy/inco/grupos/mf/TPPSF/Bibliografia/fmguide1.pdf

[Naur] Naur, P. "Understanding Turing's Universal Machine - Personal Style in Program
Description", The Computer Journal, Vol 36, Number 4, 1993.

[Neumann] Neumann, Peter, Principles Assuredly Trustworthy Composable
Architectures: (Emerging Draft of the) Final Report, December 2003

[Patterson] Patterson, Robert W. & Conner, Darryl R. “Building Commitment to
Organizational Change.” Training and Development Journal, April 1983, pp. 18-30.

[Payne] Payne, Jeffery E. “Regulation and Information Security: Can Y2K Lessons Help
Us?” IEEE Security and Privacy. March/April 2004

[Pfleeger] Pfleeger, Shari Lawrence, and Les Hatton, "Investigating the Influence of
Formal Method", IEEE Computer, Volume 30, No 2, Feb 1997.

[Powell] Prowell, S., C. Trammell, R. Linger, and J. Poore, Cleanroom Software
Engineering: Technology and Process, Addison Wesley, Reading, MA, 1999.

[Rogers] Rogers, Everett. Diffusion of Innovations. Free Press, 1995.

 53

http://www.cigital.com/~gem/malcode.pdf

[Saltzer] Saltzer, Jerry, and Mike Schroeder, “The Protection of Information in Computer
Systems”, Proceedings of the IEEE. Vol. 63, No. 9 (September 1975), pp. 1278-1308.
Available on-line at http://cap-lore.com/CapTheory/ProtInf/.

[Schneier] Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World,
John Wiley & Sons (2000)

[SEI] SEI, Technology Transition Practices, http://www.sei.cmu.edu/ttp/value-
networks.html.

[Senge] Senge, Peter M., The Fifth Discipline. Currency; 1st edition October 1, 1994.

[Spivey] Spivey, J.M. The Z Notation: A Reference Manual, 2nd Edition. Prentice-Hall,
1992.

[Vaughn] Vaughn, Steven J. “Building Better Software with Better Tools”, IEEE
Computer, September 2003, Vol 36, No 9.

[Viega] Viega, John, and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way, Reading, MA: Addison Wesley, 2001.

[Walsh] Walsh, L. "Trustworthy Yet?" Information Security Magazine, Feb. 2003.
See http://infosecuritymag.techtarget.com/2003/feb/cover.shtml

[Weinberg] The Virginia Satir change model, adapted from G. Weinberg, Quality
Software Management, Vol. 4: Anticipating Change, Ch 3.

[Whittaker] Whittaker, James, and Herbert Thompson. How to Break Software Security.
Addison-Wesley, 2003.

 54

http://cap-lore.com/CapTheory/ProtInf/
http://www.sei.cmu.edu/ttp/value-networks.html
http://www.sei.cmu.edu/ttp/value-networks.html
http://infosecuritymag.techtarget.com/2003/feb/cover.shtml

Software Process Subgroup
Task Force on Security across the Software Development Lifecycle

National Cyber Security Summit
March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

	Foreword
	The Problem
	Current Status
	Required Actions
	Recommendations
	Principal Short-term Recommendations
	Principal Mid-term Recommendations
	Principal Long-Term Recommendations

	Table of Contents
	Introduction
	Scope and Purpose
	Software Security Goals and Properties
	Software Process
	Organization of Report
	Current Software Security Problem is Serious
	Problem of Producing Secure Software is Complex
	Problem of Formally Defining Secure Software Is Complex
	Why are Existing Approaches Not in Wide Use?

	Requirements for Processes and Practices to Produce Secure Software
	Overview
	Process Requirements
	Process Application
	Process Customization
	Conclusions

	Practices for Producing Secure Software
	Introduction
	Software Engineering Practices
	The Team Software Process
	Formal Methods
	Correctness-by-Construction

	Cleanroom
	Cleanroom Quality Results

	Process Models

	Technical Practices
	Principles of Secure Software Development
	Threat Modeling
	Attack Trees
	Attack Patterns
	Developer Guidelines and Checklists
	Lifecycle Practices
	Overview
	Programming Languages
	Tools
	Testing

	Risk Management
	Other Considerations
	Authentication, Authorization, Session Management, and Encryption
	Accountability
	Modifications and Patch Management
	Use of Third-Party Software

	Management Practices
	Recommendations for the DHS
	Short Term
	Mid Term
	Long Term

	Qualifying Processes and Practices as Producing Secure Software
	Purpose
	The Problems in Qualifying a Process as Producing Secure Software
	The Suggested Verification and Qualification Strategy
	Promising Qualification Techniques
	Evaluating Available Practices
	Surrogate Product Measures
	Product Security Testing
	Formal Security Proofs

	Recommendations for Department of Homeland Security on Software Process Qualification
	Short-Term Recommendations
	Intermediate-Term Recommendations
	Long-Term Recommendations

	Organizational Change
	What to expect
	Tools for Change

	Recommendations
	Short-Term Recommendations
	Mid-Term Recommendations
	Long Term Recommendations
	Certification
	Education and Training
	Accountability
	Evaluating New Technologies

	Conclusion

	References

