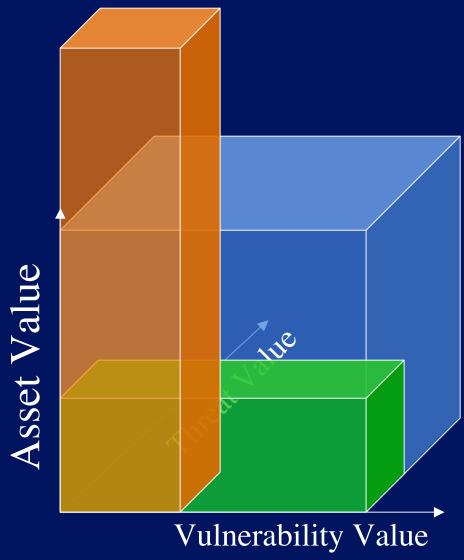
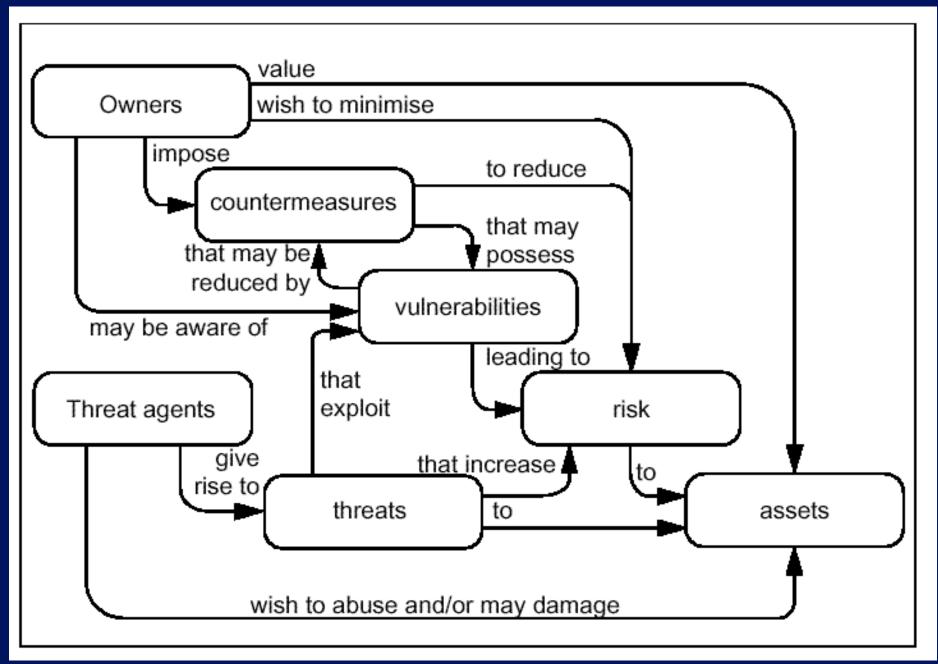


Introduction into Computer Security


EECE 412


What is Security?

- security -- "safety, or freedom from worry"
- •How can it be achieved?
 - Make computers too heavy to steal
 - Buy insurance
 - Create redundancy (disaster recovery services)

Risk = Asset * Vulnerability * Threat

Source: Common Criteria for Information Technology Security Evaluation. 1999

Classes of Threats

- Disclosure
 - snooping
- Deception
 - modification
 - spoofing
 - repudiation of origin
 - denial of receipt

- Disruption
 - modification
 - denial of service
- Usurpation
 - modification
 - spoofing
 - delay
 - denial of service

Goals of Security

Deterrence

Deter attacks

Prevention

Prevent attackers from violating security policy

Detection

Detect attackers' violation of security policy

Recovery

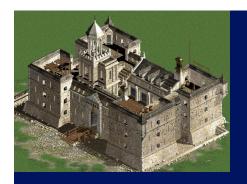
- Stop attack, assess and repair damage
- Continue to function correctly even if attack succeeds

Investigation

- Find out how the attack was executed: forensics
- Decide what to change in the future to minimize the risk

Solovki Monastery, White Sea, Russia

Conventional, fortress-based, security


Goal:

Prevent people from violating system's security policy

Means:

Fortification

- provides safety
- involves layering
- expensive
- requires maintenance
- eventually compromised

Some points about fortresses

- No absolute safety
- One weakness/error sufficient
- Extra layers → extra cost
- Important to understand threats
- Limited defender's resources
- Adjust to attacks
- Resource suppliers
- Distinguishing noncombatants from attackers
- Containment

Fortress Analogy Limitations

Fortress

 Against external attackers

- Protects only insiders
- Defenses cannot change

Computer security

Control of insiders

- Has to keep system usable
- Has to protect from new types of attacks

What Computer Security Policies are Concerned with?

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Enabling access to data and resources

Conventional Approach to Security

Protection					Assurance			
Authorization		Accountability	Availability		rance	ce	Assurance	Assurance
Access Control	Data Protection	Audit	Service Continuity	Disaster Recovery	Requirements Assurance	Design Assurance	Development Assu	Operational Assu
		Non- Repudiation						
Authentication Cryptography								

Protection

provided by a set of mechanisms (countermeasures) to prevent bad things (threats) from happening

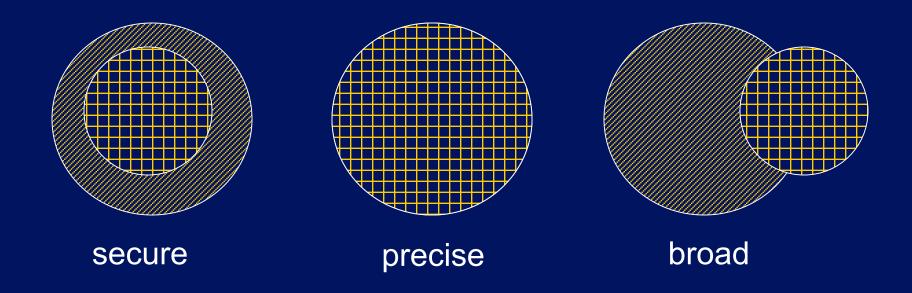
protection against breaking rules Rule examples:

- Only registered students should be able to take exam or fill out surveys
- Only the bank account owner can debit an account
- Only hospital's medical personnel should have access to the patient's medical records
- Your example...

Authorization Mechanisms: Data Protection

- No way to check the rules
 - e.g. telephone wire or wireless networks
- No trust to enforce the rules
 - e.g. MS-DOS

You can tell who did what when


- (security) audit -- actions are recorded in audit log
- Non-Repudiation -- evidence of actions is generated and stored

Availability

- Service continuity -- you can always get to your resources
- Disaster recovery -- you can always get back to your work after the interruption

Types of Mechanisms

Set of things the system builder and the operator of the system do to convince you that it is really safe to use.

- the system can enforce the policy you are interested in, and
- the system works as intended

Securing Systems

Steps of Improving Security

- analyze risks
 - asset values
 - threat degrees
 - vulnerabilities
- 2. develop/change policies
- 3. choose & develop countermeasures
- 4. assure
- 5. go back to the beginning

Key Points

Protection						Assurance			
Authorization		Accountability	Availability		rance	ce	Assurance	Assurance	
Access Control	Data Protection	Audit	Nou-	Disaster Recovery	Requirements Assurance	Design Assurance	Development Assu	Operational Assu	
		Non- Repudiation							
Authentication									
Cryptography									

Key Points (cont-ed)

- Secure, precise, and broad mechanisms
- Risk = Asset * Vulnerability * Threat
- Steps of improving security
- Classes of threats
 - Disclosure
 - Deception
 - Disruption
 - Usurpation