

THE UNIVERSITY OF BRITISH COLUMBIA

Introduction to Cryptography

EECE 412

opyright © 2004-2007 Konstantin Beznoso

Session Outline

- Historical background
 - · Caesar and Vigenère ciphers
 - · One-time pad
 - · One-way functions
 - Asymmetric cryptosystems
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - · Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - · Digital signatures

THE UNIVERSITY OF BRITISH COLUMBIA

Historical Background

To read: 5.1-5.2 Anderson's book 8.1-8.2 Bishop's book

Copyright © 2004-2007 Konstantin Beznosov

Letter Indices in English Alphabet

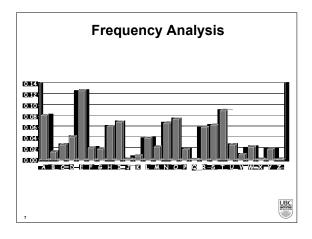
Α	В	С	D	Е	F	G	Н	I	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Caesar Cipher

- Plaintext is HELLO WORLD
- Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - C = P + K mod 26
- Ciphertext: KHOOR ZRUOG
 Plain HELLOWORLD
 Key DDDDDDDDDD
 Cipher KHOORZRUOG

Monoalphabetic Cipher

Invented by Arabs in 8th or 9th centuries


Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	 Z
F	Т	W	S	G	М	Р	Α	Z	С	L	>	0	D	 В

Plain HELLOWORLD

Key

Cipher AGVVYEYZVS

Polyalphabetic Vigenère Cipher

proposed by Blaise de Vigenere from the court of Henry III of France in the sixteenth century

Like Cæsar cipher, but use a phrase

- Example
 - Message: TO BE OR NOT TO BE THAT IS THE QUESTION
 - Key: RELATIONS
 - Encipher using Cæsar cipher for each letter:

Plain TO BE OR NOT TO BE THAT IS THE QUESTION Key RE LATIONS RE LATION SR ELATIONSREL Cipher KS ME HZ BBL KS ME MPOG AJ XSE J CSFLZSY

Cryptanalysis of Vigenère Cipher

Factoring of distances

- · KSMEHZBBLKSMEMPOGAJXSEJCSFLZSY
- . 012345678012345678012345678012

One-Time Pad

A Vigenère cipher with a random key at least as long as the message

- Provably unbreakable
- Why?

Plain text	DOIT	DONT
Key	AJIY	AJDY
Cipher text	DXQR	DXQR

 Warning: keys must be random, or you can attack the cipher by trying to regenerate the key

THE UNIVERSITY OF BRITISH COLUMBIA

Little Bit of History

90 years ago, January 19, 1917 ...

Copyright © 2004-2007 Konstantin Beznosov

Codebook

- □ Literally, a book filled with "codewords"
- □ Zimmerman Telegram encrypted via codebook

 Februar
 13605

 fest
 13732

 finanzielle
 13850

 folgender
 13918

 Frieden
 17142

 Friedenschluss
 17149

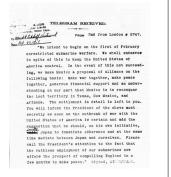
□ Modern block ciphers are codebooks!

Part 1 — Cryptography

12

Zimmerman Telegram

- □ One of most famous codebook ciphers ever
- □ Ciphertext shown here...



Part 1 — Cryptography

Zimmerman Telegram Decrypted

- □ British had recovered partial codebook
- □ Able to fill in missing parts
- □ Led to US entry in WWI

Part 1 — Cryptography

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

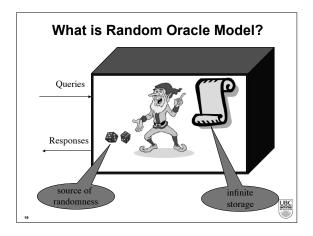
Asymmetric Cryptosystems

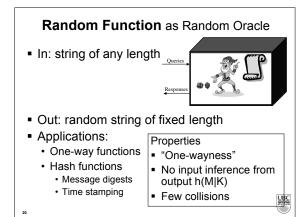
Public Key Cryptography

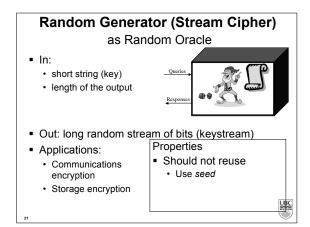
- Two keys
 - Sender uses recipient's **public key** to encrypt
 - · Receiver uses his private key to decrypt
- Based on trap door, one way function
 - · Easy to compute in one direction
 - · Hard to compute in other direction
 - · "Trap door" used to create keys
 - Example: Given p and q, product N=pq is easy to compute, but given N, it is hard to find p and q

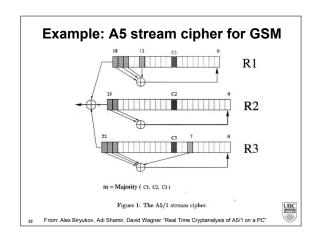
Public Key Cryptography

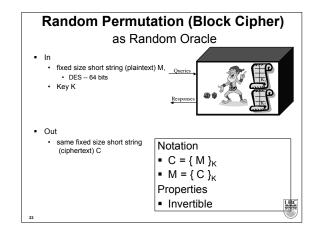
- Encryption
 - · Suppose we encrypt M with Bob's public key
 - Only Bob's private key can decrypt to find M
- Digital Signature
 - Sign by "encrypting" with private key
 - Anyone can **verify** signature by "decrypting" with public key
 - · But only private key holder could have signed
 - Like a handwritten signature (and then some)

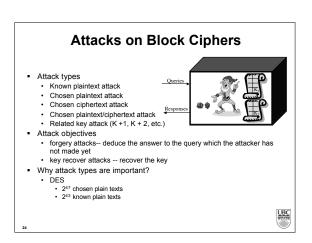


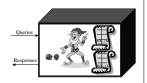

THE UNIVERSITY OF BRITISH COLUMBIA

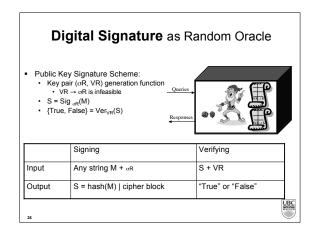

Random Oracle Model


5.3 (Anderson's book)


Copyright © 2004-2007 Konstantin Beznosov






Public Key Encryption and Trap-door One-Way Permutation

as Random Oracle

- Public Key Encryption Scheme:
 Key pair (KR, KR-¹) generation function from random string R
 KR → KR-¹ is infeasible
 - C = {M) _{KR}
 M = {C) _{KR}⁻¹

- · fixed size short string (plaintext) M,
- Key KR
- Out: fixed size short string (ciphertext) C

Summary

- Historical background
 - · Caesar and Vigenère ciphers
 - One-time pad
 - · One-way functions
 - Asymmetric cryptosystems Responses
- The Random Oracle model
- · Random functions: Hash functions
- · Random generators: stream ciphers
- Random Permutations: block ciphers
- · Public key encryption and trapdoor one-way permutations
- · Digital signatures

UBC