

THE UNIVERSITY OF BRITISH COLUMBIA

Introduction to Cryptography

EECE 412

Copyright © 2004-2007 Konstantin Beznosov

Session Outline

- Historical background
 - Caesar and Vigenère ciphers
 - One-time pad
 - One-way functions
 - Asymmetric cryptosystems
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures

THE UNIVERSITY OF BRITISH COLUMBIA

Historical Background

To read: 5.1-5.2 Anderson's book 8.1-8.2 Bishop's book

Copyright © 2004-2007 Konstantin Beznosov

Letter Indices in English Alphabet

A	В	С	D	E	F	G	Н	I	J	K	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12
N	Ο	Ρ	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Caesar Cipher

- Plaintext is HELLO WORLD
- Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - C = P + K mod 26
- Ciphertext: KHOOR ZRUOG
 Plain HELLOWORLD
 Key DDDDDDDDD
 Cipher KHOORZRUOG

Monoalphabetic Cipher

Invented by Arabs in 8th or 9th centuries

Plain HELLOWORLD Key Cipher AGVVYEYZVS

Frequency Analysis

Polyalphabetic Vigenère Cipher

proposed by Blaise de Vigenere from the court of Henry III of France in the sixteenth century Like Cæsar cipher, but use a phrase

- Example
 - Message: TO BE OR NOT TO BE THAT IS THE QUESTION
 - Key: RELATIONS
 - Encipher using Cæsar cipher for each letter:

PlainTO BE OR NOT TO BE THAT IS THE QUESTIONKeyRELATIONS RELATION SRELATIONSRELCipherKS ME HZ BBLKS ME MPOG AJ XSE J CSFLZSY

Cryptanalysis of Vigenère Cipher

Factoring of distances

- KSMEHZBBLKSMEMPOGAJXSEJCSFLZSY
- 012345678012345678012345678012

One-Time Pad

A Vigenère cipher with a random key at least as long as the message

- Provably unbreakable
- Why?

Plain text	DOIT	D O N T
Кеу	AJIY	AJDY
Cipher text	DXQR	DXQR

 Warning: keys must be random, or you can attack the cipher by trying to regenerate the key

THE UNIVERSITY OF BRITISH COLUMBIA

Little Bit of History

90 years ago, January 19, 1917 ...

Copyright © 2004-2007 Konstantin Beznosov

Codebook

Literally, a book filled with "codewords"

Zimmerman Telegram encrypted via codebook

:

Februar	13605
fest	13732
finanzielle	13850
folgender	13918
Frieden	17142
Friedenschluss	17149

Modern block ciphers are codebooks!

Zimmerman Telegram

 One of most famous codebook ciphers ever
 Ciphertext

shown here...

Bead the	following telegre h hereof, which	m, subject to t are bareby agre	ed to 0.A	D.C	X	via Gal	Vestor	7 Dal	vist
GI	SRMAN LE	GATION	120	A.M.			1400	JAN LI	B 1817
	MEXICO	CITY	- 15 V.	19	NY W			1.1.	4.191
130	13042	13401	8501	115 3	528 41	6 172	14 84	91 11	310
18147	18222	21560	1024	7 1151	8 2367	7 . 1360	05 349	94 14	936
98092	5905	11311	10392	10371	0302	21290	5161	3969	5
23571	17504	11269	1827	6 1810	1 0317	0228	17.69	4 447	3
23284	22200	1945	2158	6789	3 5569	1391	8 895	3 121	37
1333	4725	4458	5905	17166	13851	4458	17149	14471	670
13850	12224	6929	14991	7382	15857	67893	14218	3 364	77
5870	17553	67893	. 5870	5454	16102	15217	22801	1713	8
21001	17388	7440	23638	18222	6719	14331	1502	1 236	845
3156	23552	22096	21604	4797	9497	22464	20855	4377	1.30
23610	18140	22260	5905	13347	20420	39689	13732	206	67
6929	5275	18507	52262	1340	22049	13339	11265	2229	5
10439	14814	4178	6992	8784	7632	7357 6	926 5	2262	1126
21100	21272	9346	9559	22464	15874	18502	18500	1585	57
2188	5376	7381	98092	16127	13486	9350	9220	76036	1421
5144	2831	17920	11347	17142	11264	7667	7762	15099	911
10482	97556	3569	3670	i en al a					
Constant Constant Constant	1) BI	EPNSTOPF	F	1. 1. 2. 3			1.30
	Construction of the	2 - 2.4	1. 1. 1.	1922 - 2 M	ALL		- 15		. 568

Zimmerman Telegram Decrypted

- British had recovered partial codebook
- Able to fill in missing parts
- Led to US entry in WWI

By Much A Child Internet FROM 2nd from

FROM 2nd from London # 5747.

"We intend to begin on the first of February unrestricted submarine warfare. We shall endeavor in spite of this to keep the United States of america neutral. In the event of this not succeeding, we make Mexico a proposal of alliance on the following basis: make war together, make peace together, generous financial support and an understanding on our part that Mexico is to reconquer the lost territory in Texas, New Mexico, and arizona. The settlement in detail is left to you. You will inform the President of the above most . secretly as soon as the outbreak of war with the United States of America is certain and add the suggestion that he should, on his own initiative, Japan to immediate adherence and at the same time mediate between Japan and ourselves. Please call the President's attention to the fact that the ruthless employment of our submarines now offers the prospect of compelling England in a few months to make peace." Signed, ZINTERNARM.

THE UNIVERSITY OF BRITISH COLUMBIA

Asymmetric Cryptosystems

Copyright © 2004-2007 Konstantin Beznosov

Public Key Cryptography

Two keys

- Sender uses recipient's public key to encrypt
- Receiver uses his private key to decrypt

Based on trap door, one way function

- Easy to compute in one direction
- Hard to compute in other direction
- "Trap door" used to create keys
- Example: Given p and q, product N=pq is easy to compute, but given N, it is hard to find p and q

Public Key Cryptography

Encryption

- Suppose we encrypt M with Bob's public key
- Only Bob's private key can decrypt to find M
- Digital Signature
 - Sign by "encrypting" with private key
 - Anyone can verify signature by "decrypting" with public key
 - But only private key holder could have signed
 - Like a handwritten signature (and then some)

THE UNIVERSITY OF BRITISH COLUMBIA

Random Oracle Model

5.3 (Anderson's book)

Copyright © 2004-2007 Konstantin Beznosov

What is Random Oracle Model?

Random Function as Random Oracle

In: string of any length

- Out: random string of fixed length
- Applications:
 - One-way functions
 - Hash functions
 - Message digests
 - Time stamping

Properties

- "One-wayness"
- No input inference from output h(M|K)
- Few collisions

Random Generator (Stream Cipher) as Random Oracle

In:

- short string (key)
- length of the output

- Out: long random stream of bits (keystream)
- Applications:
 - Communications encryption
 - Storage encryption

Properties

- Should not reuse
 - Use seed

Example: A5 stream cipher for GSM

From: Alex Biryukov, Adi Shamir, David Wagner "Real Time Cryptanalysis of A5/1 on a PC"

Random Permutation (Block Cipher) as Random Oracle

- In
 - fixed size short string (plaintext) M,
 - DES -- 64 bits
 - Key K

Out

 same fixed size short string (ciphertext) C

Notation

C = { M }_K
 M = { C }_K
 Properties
 Invertible

Attacks on Block Ciphers

Attack types

- Known plaintext attack
- Chosen plaintext attack
- Chosen ciphertext attack
- Chosen plaintext/ciphertext attack
- Related key attack (K +1, K + 2, etc.)

Attack objectives

- forgery attacks-- deduce the answer to the query which the attacker has not made yet
- key recover attacks -- recover the key
- Why attack types are important?
 - DES
 - 2⁴⁷ chosen plain texts
 - 2⁴³ known plain texts

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

Public Key Encryption Scheme:

- Key pair (KR, KR⁻¹) generation function from random string R
 - KR \rightarrow KR⁻¹ is infeasible
- C = {M) _{KR}
- M = {C) _{KR}⁻¹

In:

- fixed size short string (plaintext) M,
- Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

Public Key Signature Scheme:

- Key pair (σ R, VR) generation function
 - VR $\rightarrow \sigma R$ is infeasible
- S = Sig $_{\sigma R}(M)$
- {True, False} = Ver_{VR}(S)

	Signing	Verifying
Input	Any string M + σR	S + VR
Output	S = hash(M) cipher block	"True" or "False"

Summary

Historical background

- Caesar and Vigenère ciphers
- One-time pad
- One-way functions
- Asymmetric cryptosystems Responses
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures

