UBC

UBC

UBC

UBC

Non-non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- **Problem:** Bob knows Alice placed the order, but he can't prove it

UBC

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt vs Encrypt and Sign

Public Key Notation Sign message M with Alice's private key: [M]_{Alice} Encrypt message M with Alice's public key: {M}_{Alice}

Then
 {[M]_{Alice}}_{Alice} = M
 [{M}_{Alice}]_{Alice} = M

