

THE UNIVERSITY OF BRITISH COLUMBIA

Public Key Cryptography

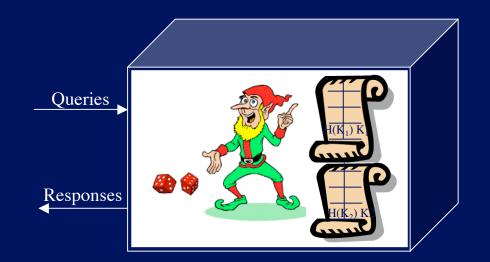
EECE 412

Session Outline

- The Random Oracle model for Public Key Cryptosystems
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures
- RSA
- Uses of Public Crypto
- The order of sign and encrypt

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

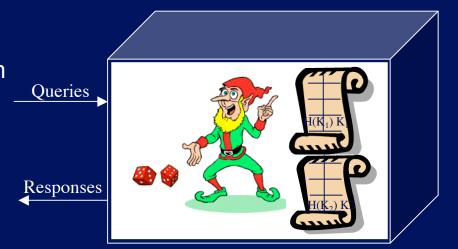
- Public Key Encryption Scheme:
 - Key pair (KR, KR-1) generation function from random string R
 - KR → KR⁻¹ is infeasible
 - C = {M) KR
 - $M = \{C\}_{KR}^{-1}$



- In:
 - fixed size short string (plaintext) M,
 - Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

- Public Key Signature Scheme:
 - Key pair (σR, VR) generation function
 - $VR \rightarrow \sigma R$ is infeasible
 - S = Sig $_{\sigma R}(M)$
 - $\{True, False\} = Ver_{VR}(S)$



	Signing	Verifying
Input	Any string M + oR	S + VR
Output	S = hash(M) cipher block	"True" or "False"

Looking Under the Hood

RSA

RSA

- Invented by Cocks (GCHQ), independently, by Rivest, Shamir and Adleman (MIT)
- Let p and q be two large prime numbers
- Let N = pq be the modulus
- Choose e relatively prime to (p-1)(q-1)
- Find d s.t. ed = 1 mod (p-1)(q-1)
- Public key is (N,e)
- Private key is d

RSA

- To encrypt message M compute
 - C = Me mod N
- To decrypt C compute
 - M = C^d mod N
- Recall that e and N are public
- If attacker can factor N, he can use \overline{e} to easily find d since $ed = 1 \mod (p-1)(q-1)$
- Factoring the modulus breaks RSA
- It is not known whether factoring is the only way to break RSA

Simple RSA Example

- Example of RSA
 - Select "large" primes p = 11, q = 3
 - Then N = pq = 33 and (p-1)(q-1) = 20
 - Choose e = 3 (relatively prime to 20)
 - Find d such that ed = 1 mod 20, we find that d = 7 works
- Public key: (N, e) = (33, 3)
- Private key: d = 7

Simple RSA Example

- Public key: (N, e) = (33, 3)
- Private key: d = 7
- Suppose message M = 8
- Ciphertext C is computed as
 C = Me mod N = 83 = 512 = 17 mod 33
- Decrypt C to recover the message M by

```
M = C^d \mod N = 17^7 = 410,338,673
= 12,434,505 * 33 + 8 = 8 mod 33
```


Uses for Public Key Crypto

Uses for Public Key Crypto

- Confidentiality
 - Transmitting data over insecure channel
 - Secure storage on insecure media
- Authentication
- Digital signature provides integrity and non-repudiation
 - No non-repudiation with symmetric keys

Non-non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- Problem: Bob knows Alice placed the order, but he can't prove it

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt vs Encrypt and Sign

Public Key Notation

- Sign message M with Alice's private key: [M]_{Alice}
- Encrypt message M with Alice's public key: {M}_{Alice}
- Then

$${[M]_{Alice}}_{Alice} = M$$

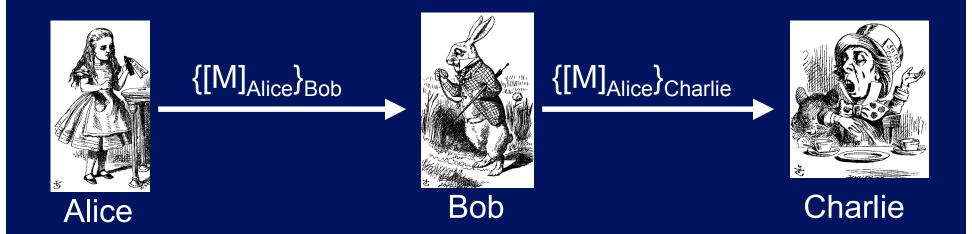
 ${[M]_{Alice}}_{Alice} = M$

Confidentiality and Non-repudiation

- Suppose that we want confidentiality and non-repudiation
- Can public key crypto achieve both?
- Alice sends message to Bob
 - Sign and encrypt {[M]_{Alice}}_{Bob}
 - Encrypt and sign [{M}_{Bob}]_{Alice}
- Can the order possibly matter?

Sign and Encrypt

M = "I love you"



- Q: What is the problem?
- A: Charlie misunderstands crypto!

Encrypt and Sign

■ M = "My theory, which is mine, is this:"

[{M}_{Bob}]_{Alice}

Charlie

- Note that Charlie cannot decrypt M
- Q: What is the problem?
- A: Bob misunderstands crypto!

