THE UNIVERSITY OF BRITISH COLUMBIA

Public Key Cryptography

EECE 412

Session Outline

- The Random Oracle model for Public Key Cryptosystems
- Public key encryption and trapdoor one-way permutations
- Digital signatures
- RSA
- Uses of Public Crypto
- The order of sign and encrypt

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

- Public Key Encryption Scheme:
- Key pair (KR, KR-1) generation function from random string R
- KR $\rightarrow \mathrm{KR}^{-1}$ is infeasible
- $C=\{M)_{K R}$
- $M=\{C)_{K R^{-1}}$

- In:
- fixed size short string (plaintext) M,
- Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

- Public Key Signature Scheme:
- Key pair (oR, VR) generation function
- VR \rightarrow oR is infeasible
- $S=\operatorname{Sig}_{\sigma R}(M)$
- $\{$ True, False $\}=\operatorname{Ver}_{\mathrm{VR}}(\mathrm{S})$

	Signing	Verifying
Input	Any string M + oR	$\mathrm{S}+\mathrm{VR}$
Output	$\mathrm{S}=$ hash(M) \| cipher block	"True" or "False"

Looking Under the Hood

RSA

RSA

- Invented by Cocks (GCHQ), independently, by Rivest, Shamir and Adleman (MIT)
- Let p and q be two large prime numbers
- Let $N=p q$ be the modulus
- Choose e relatively prime to ($p-1$)($q-1$)
- Find d s.t. ed = 1 mod (p-1)(q-1)
- Public key is (N, e)
- Private key is d

RSA

- To encrypt message M compute
- $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{N}$
- To decrypt C compute
- M = C ${ }^{d} \bmod N$
- Recall that e and N are public
- If attacker can factor N, he can use e to easily find d since ed = $1 \bmod (p-1)(q-1)$
- Factoring the modulus breaks RSA
- It is not known whether factoring is the only way to break RSA

Simple RSA Example

- Example of RSA
- Select "large" primes $p=11, q=3$
- Then $\mathrm{N}=\mathrm{pq}=33$ and $(\mathrm{p}-1)(\mathrm{q}-1)=20$
- Choose e $=3$ (relatively prime to 20)
- Find d such that ed = 1 mod 20, we find that $d=7$ works
- Public key: (N, e)=(33, 3)
- Private key: d=7

Simple RSA Example

- Public key: (N, e) = $(33,3)$
- Private key: d=7
- Suppose message M = 8
- Ciphertext C is computed as

$$
C=M^{e} \bmod N=8^{3}=512=17 \bmod 33
$$

- Decrypt C to recover the message M by

$$
\begin{aligned}
M & =C^{d} \bmod N=17^{7}=410,338,673 \\
& 12,434,505 * 33+8=8 \bmod 33
\end{aligned}
$$

Uses for Public Key Crypto

Uses for Public Key Crypto

- Confidentiality
- Transmitting data over insecure channel
- Secure storage on insecure media
- Authentication
- Digital signature provides integrity and non-repudiation
- No non-repudiation with symmetric keys

Non-non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- Problem: Bob knows Alice placed the order, but he can't prove it

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt vs
 Encrypt and Sign

Public Key Notation

- Sign message M with Alice's private key: $[\mathrm{M}]_{\text {Alice }}$
- Encrypt message M with Alice's public key: $\{\mathrm{M}\}_{\text {Alice }}$
- Then
$\left\{[\mathrm{M}]_{\text {Alicee }}\right\}_{\text {Alice }}=\mathrm{M}$
$\left[\{M\}_{\text {Alice }}\right]_{\text {Alice }}=M$

Confidentiality and Non-repudiation

- Suppose that we want confidentiality and non-repudiation
- Can public key crypto achieve both?
- Alice sends message to Bob
- Sign and encrypt $\left\{[\mathrm{M}]_{\text {Alicee }}\right\}_{\text {Bob }}$
- Encrypt and sign $\left[\{\mathrm{M}\}_{\text {Boob }}\right.$ Alice
- Can the order possibly matter?

Sign and Encrypt

$\square \mathrm{M}=$ "I love you"

- Q: What is the problem?
\square A: Charlie misunderstands crypto!

Encrypt and Sign

$\square \mathrm{M}=$ " My theory, which is mine, is this:"

Alice

Charlie

Bob
\square Note that Charlie cannot decrypt M
\square Q: What is the problem?
\square A: Bob misunderstands crypto!

