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Kerckhoff’s Principle

“The security of a cryptosystem must not
depend on keeping secret the crypto-
algorithm. The security depends only on
keeping secret the key”

Auguste Kerckhoff von Nieuwenhof
Dutch linguist

1883
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Outline

 Key exchange
• Session vs. interchange keys
• Classical, public key methods

 Cryptographic key infrastructure
• Certificates

 Quantum key distribution
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Notation
 X → Y : { Z || W } kX,Y

• X sends Y the message produced by concatenating Z and W
enciphered by key kX,Y, which is shared by users X and Y

 A → T : { Z } kA || { W } kA,T

• A sends T a message consisting of the concatenation of Z
enciphered using kA, A’s key, and W enciphered using kA,T, the
key shared by A and T

 r1, r2 nonces (“nonrepeating” random numbers)
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Session, Interchange Keys

 Alice wants to send a message m to Bob

• Assume public key encryption

• Alice generates a random cryptographic key ks and uses it to

encipher m

• To be used for this message only

• Called a session key

• She enciphers ks with Bob’s public key kB

• kB enciphers all session keys Alice uses to communicate with Bob

• Called an interchange key

• Alice sends { m } ks { ks } kB

 Benefits?
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Key Exchange Algorithms

Goal: Alice, Bob get shared key

 Key cannot be sent in clear

 Alice, Bob may trust third party

 All cryptosystems, protocols publicly known
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Classical Key Exchange
 Bootstrap problem: how do Alice, Bob

begin?
• Alice can’t send it to Bob in the clear!

 Assume trusted third party, Cathy
• Alice and Cathy share secret key kA
• Bob and Cathy share secret key kB

 Use this to exchange shared key ks
 Ideas?

Alice
KA

Cathy
KC

Bob
KB

Eve
KE
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Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB
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Problems

 How does Bob know he is talking to Alice?
• Replay attack: Eve records message from Alice

to Bob, later replays it; Bob may think he’s
talking to Alice, but he isn’t

• Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

 Protocols must provide authentication and
defense against replay
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Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Denning-Sacco Modification

 Assumption: all keys are secret
 Question: suppose Eve can obtain session key.

How does that affect protocol?
• Assuming Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks
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Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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What is Kerberos?

 Authentication system

• Based on Needham-Schroeder with Denning-Sacco modification

• Central server plays role of trusted third party (“Cathy”)

 Ticket

• Issuer vouches for identity of requester of service

 Authenticator

• Identifies sender
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Idea

 User u authenticates to Kerberos server
• Obtains ticket Tu,TGS for ticket granting service (TGS)

 User u wants to use service s:
• User sends authenticator Au, ticket Tu,TGS to TGS asking for ticket

for service
• TGS sends ticket Tu,s to user
• User sends Au, Tu,s to server as request to use s

User
Ku

Authentication
Service

Service
Ks

TGS
KTGS

Kerberos Server

Keys
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Ticket

 Credential saying issuer has identified ticket requester
 Example ticket issued to user u for service s

Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
• ku,s is session key for user and service
• Valid time is interval for which ticket valid
• u’s address may be IP address or something else

• Note: more fields, but not relevant here
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Authenticator

 Credential containing identity of sender of ticket
• Used to confirm sender is entity to which ticket was

issued

 Example: authenticator user u generates for
service s

Au,s = { u || generation time || kt } ku,s

where:
• kt is alternate session key
• Generation time is when authenticator generated

• Note: more fields, not relevant here
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Protocol

user ASuser || TGS

user AS
{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s
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Analysis
 First two steps

• get user ticket to use TGS
• User u can obtain session key only if u knows key shared with AS

 Next four steps
• u gets and uses ticket for service s
• Service s validates request by checking sender (using Au,s)
• Step 6 optional; used when u requests confirmation

user AS
user || TGS

user AS
{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service

{ t + 1 } ku,s
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Problems

 Relies on synchronized clocks
• If not synchronized and old tickets,

authenticators not cached, replay is possible

 Tickets have some fixed fields
• Dictionary attacks possible
• Kerberos 4 session keys weak (had much less

than 56 bits of randomness)
• researchers at Purdue found them from tickets in

minutes
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What is Public Key Key Exchange?

 Here interchange keys known
• eA, eB Alice and Bob’s public keys known to all
• dA, dB Alice and Bob’s private keys known only to

owner

 Simple protocol
• ks is desired session key

Alice Bob
{ ks } eB
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Problem and Solution

 Vulnerable to forgery or replay
• Because eB known to anyone, Bob has no assurance

that Alice sent message

 Simple fix uses Alice’s private key
• ks is desired session key

Alice Bob
{ { ks } dA } eB
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Why Alice Can’t Get Bob’s Public Key

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message
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What’s Cryptographic Key
Infrastructure?

 Goal: bind identity to key

 Classical: not possible as all keys are shared

• Use protocols to agree on a shared key (see earlier)

 Public key: bind identity to public key



27

Certificates

 Token (message) containing
• Corresponding public key
• Identity of principal (here, Alice)
• Timestamp (when issued)
• Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC
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Use

 Cathy issues Alice’s certificate
• Creates certificate
• Generates hash of certificate
• Enciphers hash with her private key

 Bob gets Alice’s certificate
• Validates

• Obtains issuer’s public key
• Deciphers enciphered hash
• Recomputes hash from certificate and compare

 Problem?
• Bob needs Cathy’s public key to validate certificate
• Two approaches: Merkle’s trees, signature chains
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Certificate Signature Chains

 Purpose: getting issuer’s public key
 Solutions:

• tree-like hierarchies
• Webs of trust (PGP)
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X.509 Chains

 Some certificate components in X.509v3:
• Version
• Serial number
• Signature algorithm identifier: hash algorithm
• Issuer’s name; uniquely identifies issuer
• Interval of validity
• Subject’s name; uniquely identifies subject
• Subject’s public key
• Signature: enciphered hash
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PGP Certification

 Single certificate may have multiple signatures
 Notion of “trust” embedded in each signature

• Range from “untrusted” to “ultimate trust”
• Signer defines meaning of trust level (no standards!)
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Validating Certificates
Alice needs to validate Bob’s

OpenPGP cert
• Does not know Fred,

Giselle, or Ellen

1. Alice gets Giselle’s cert
• Knows Henry slightly, but

his signature is at “casual”
level of trust

2. Alice gets Ellen’s cert
• Knows Jack, so uses his

cert to validate Ellen’s,
then hers to validate
Bob’s

Bob

Fred

Giselle

Ellen
Irene

Henry

Jack

Arrows show signatures
Self signatures not shown
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Key Revocation

 Why revoke a key?
• Certificates invalidated before expiration

• Usually due to compromised key
• May be due to change in circumstance (e.g., someone

leaving company)

 Problems
• Entity revoking certificate authorized to do so
• Revocation information circulates to everyone fast

enough
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CRLs

 Certificate revocation list lists certificates that are
revoked

 X.509: only certificate issuer can revoke
certificate
• Added to CRL

 PGP: signers can revoke signatures; owners can
revoke certificates, or allow others to do so
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Quantum Key Distribution
(QKD)

Slides from this section are adopted from
Ravi Kumar Balachandran’s slides on QKD available at
http://cse.unl.edu/~ashok/CSCE990Seminar/slides/ravib.ppt
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Why QKD?

 The security of all current encryption algorithms
depend on solving some computationally difficult
problems
• RSA – factoring large prime numbers
• Symmetric ciphers -- brute force search of the key.

 Quantum computers (in the future) can speed up
this process making such ciphers trivial to break

 Quantum theory also forms the basis for QKD
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Polarization of light

 Every photon from a light source vibrates
in all directions – unpolarized light

 When light is passed through a polarizer,
the out coming light is said to be polarized
with respect to the polarizer
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QKD Scheme

Alice’s Sending Bases

Alice’s Values

Bob’s Receiving Bases

Bob’s Values

Alice Confirms    
Key 1 10 0
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Implementation of QKD

 First prototype in 1989, two computers separated by a
distance of 32 cm by Bennet

 Los Alamos – 1996 – 14 Km with fiber in the field
 British Telecom – 1998 – 30 Km
 Successful tests have been done over distances of 1.6

Km with no waveguide
 March 2002 – 67 Km using optical fiber working at

1550nm
 October 2003 -- world’s first quantum cryptographic

network: 6 QKD nodes in Cambridge, MA; 22 Km
 High-grade key material at rate 5Kb/s


