

THE UNIVERSITY OF BRITISH COLUMBIA

Security Policies

EECE 412

Copyright © 2004-2007 Konstantin Beznosov

Outline

- Access control mechanisms
- Access Matrix (DAC)
- Security policies
 - Confidentiality policies
 - Bell LaPadula confidentiality model
 - Integrity policies
 - Biba integrity model
 - Clark-Wilson Integrity Model
 - Hybrid policies

• RBAC

Where We Are

Protection					Assurance			
Authorization		Accountability	Availability		ance.	се	rance	rance
Access Control	Data Protection	Audit	Service Continuity	Disaster Recovery	Requirements Assur	Design Assuran	Development Assu	Operational Assu
		Non- Repudiation						
Authentication								
Cryptography								

Policies and Mechanisms

- Policies describe what is allowed
- Mechanisms control how policies are

enforced

THE UNIVERSITY OF BRITISH COLUMBIA

Access Matrix

Copyright © 2004-2007 Konstantin Beznosov

Object System

7

Access Matrix Structure

- objects (entities)
 - Subjects $S = \{ s_1, \dots, s_n \}$
 - Objects $O = \{ o_1, ..., o_m \}$
 - Rights $R = \{ r_1, ..., r_k \}$
 - Entries $A[s_i, o_j] \subseteq R$
 - A[s_i, o_j] = { r_x, ..., r_y } means subject s_i has rights r_x, ..., r_y over object o_j

8

Example

- Processes p, q
- Files *f*, *g*
- Rights r, w, x, a, o

	f	g	p	<i>q</i>
p	rwo	r	rwxo	W
<i>q</i>	а	ro	r	rwxo

Matrix Implementation Techniques

1. $T = \{ < s, o, A_{d,x} > \} - \text{impractical} \}$

- a) Only relevant parts of A need to be handy
- b) Could be very inefficient for some As (e.g. public files)
- c) List of objects to which d has access

2. Capability =
$$\langle o, A_{d,x} \rangle$$

- C-lists
- Attach C-list to subjects
- Addresses (a), (c) and potentially (b)
- 3. attach the protection information to the object: $A_x(d)$
 - Access key capability used for identification, (credential)
 - {<access key, {access attributes}>} access control list (ACL)

Access Matrix Summary

- Object System
 - Subjects, objects, access matrix
 - Objects are shared
 - All subjects are objects
 - not all objects are subjects
- Matrix implementation
 - Capability lists
 - Access control lists

THE UNIVERSITY OF BRITISH COLUMBIA

Security Policies

Copyright © 2004-2007 Konstantin Beznosov

What's Security Policy?

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation

Secure system

- Starts in authorized state
- Never enters unauthorized state
- Authorized state in respect to what?

What's Confidentiality?

- X set of entities, I information
- I has confidentiality property with respect to X if no x ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - *I* final exam answer key
 - *I* is confidential with respect to *X* if students cannot obtain final exam answer key

What's Integrity?

X set of entities, I information

• *I* has *integrity* property with respect to *X* if all $x \in X$ trust information in *I*

• Examples?

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information

Key Points about Policies and Mechanisms

- Policies describe what is allowed
- Mechanisms control how policies are

enforced

THE UNIVERSITY OF BRITISH COLUMBIA

Confidentiality Policies

Copyright © 2004-2007 Konstantin Beznosov

What's Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

Security levels arranged in linear ordering

Example:

- Top Secret: highest
- Secret
- Confidential
- Unclassified: lowest
- Subjects have security clearance L(s)
- Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Alice	Personnel Files
Secret	Bob	E-Mail Files
Confidential	Chiang	Activity Logs
Unclassified	Fred	Telephone Lists

- Alice can read all files
- Chiang cannot read Personnel or E-Mail Files
- Fred can only read Telephone Lists

Reading Information

- Information flows up, not down
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Property
 - Subject s can read object o iff, $L(o) \le L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed

*-Property

- Subject s can write object o iff $L(s) \le L(o)$ and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no writes down" rule

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (clearance, category set)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - (Secret, { NUC, ASI })

Levels and Lattices

- (A, C) dominates (A', C') iff $A' \leq A$ and $C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) *dom* (Secret, {NUC})
 - (Secret, {NUC, EUR}) *dom* (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) ¬*dom* (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels $L = C \times K$, dom form lattice

Bounded Isolated Classes

The Military Lattice

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by *dom* relation
- Note:
 - "dominates" serves the role of "greater than"
 - "greater than" is a total ordering, though

Reading Information

- Information flows up, not down
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Property (Step 2)
 - Subject s can read object o iff L(s) dom L(o) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
- Major can talk to colonel ("write up" or "read down")
- Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
 - maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has *maxlevel* (Secret, { NUC, EUR })
 - Colonel sets *curlevel* to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"

Key Points Regarding Confidentiality Policies

- Confidentiality policies restrict flow of information
- Bell-LaPadula model supports multilevel security
 - Cornerstone of much work in computer security

THE UNIVERSITY OF BRITISH COLUMBIA

Integrity Policies

Copyright © 2004-2007 Konstantin Beznosov

Biba Integrity Model (1977)

- Set of subjects *S*, objects *O*, integrity levels *I*, relation ≤ ⊆ *I* × *I* holding when second dominates first or same
- *min*: $I \times I \rightarrow I$ returns lesser of integrity levels
- *i*: $S \cup O \rightarrow I$ gives integrity level of entity
- <u>r</u>: $S \times O$ means $s \in S$ can read $o \in O$
- <u>w</u>: $S \times O$ means $s \in S$ can write $o \in O$
- <u>x</u>: $S \times O$ means $s \in S$ can execute $o \in O$

What does a higher integrity level of an object mean?

Intuition for Integrity Levels

The higher the level, the more confidence
That a program will execute correctly
That data is accurate and/or reliable
Note relationship between integrity and trustworthiness

 Important point: *integrity levels are not* security levels

Low-Water-Mark Policy

- Idea: when s reads o, i'(s) = min(i(s), i (o)); s can only write objects at lower levels
- Rules
 - 1. $s \in S$ can write to $o \in O$ if and only if (iff) $i(o) \leq i(s)$.
 - 2. If $s \in S$ reads $o \in O$, then i'(s) = min(i(s), i(o)), where i'(s) is the subject's integrity level after the read.
 - 3. $s_1 \in S$ can execute $s_2 \in S$ if and only if $i(s_2) \leq i(s_1)$.
- When can s read o according to the Low-Water-Mark policy?

Problems

Subjects' integrity levels decrease as system runs

- Soon no subject will be able to access objects at high integrity levels
- What could be a solution?
- Alternative: change object levels rather than subject levels
 - Soon all objects will be at the lowest integrity level

Ring Policy

- Idea: subject integrity levels static
- Rules
 - 1. $s \in S$ can write to $o \in O$ if and only if $i(o) \leq i(s)$.
 - 2. Any subject can read any object.
 - **3.** $s_1 \in S$ can execute $s_2 \in S$ if and only if $i(s_2) \leq i(s_1)$.
- Eliminates indirect modification problem

Strict Integrity Policy (a.k.a., "Biba's Model")

- Similar to Bell-LaPadula model
 - 1. $s \in S$ can read $o \in O$ iff $i(s) \leq i(o)$
 - 2. $s \in S$ can write to $o \in O$ iff $i(o) \leq i(s)$
 - 3. $s_1 \in S$ can execute $s_2 \in S$ iff $i(s_2) \leq i(s_1)$
- Add compartments and discretionary controls to get full dual of Bell-LaPadula model

Example: LOCUS and Biba

- Goal: prevent untrusted software from altering data or other software
- Approach: make levels of trust explicit
 - credibility rating based on estimate of software's trustworthiness (0 untrusted, n highly trusted)
 - trusted file systems contain software with a single credibility level
 - Process has *risk level* or highest credibility level at which process can execute
 - Must use *run-untrusted* command to run software at lower credibility level

THE UNIVERSITY OF BRITISH COLUMBIA

Clark-Wilson Integrity Model

Copyright © 2004-2007 Konstantin Beznosov

Model

- Integrity defined by a set of constraints
 - Data in a *consistent* or valid state when it satisfies these
- Example: Bank
 - D today's deposits, W withdrawals, YB yesterday's balance, TB today's balance
 - Integrity constraint: YB + D W = TB
- Well-formed transaction move system from one consistent state to another
- Issue: who examines, certifies transactions done correctly?
 - The principle of separation of duty

Entities in the Model

- CDIs: constrained data items
 - Data subject to integrity controls
- UDIs: unconstrained data items
 - Data not subject to integrity controls
- IVPs: integrity verification procedures
 - Procedures that test the CDIs conform to the integrity constraints
- TPs: transaction procedures
 - Procedures that take the system from one valid state to another

The Idea

Constrain who can do what by defining authorized triples: (user, TP, {CDI})

What's Chinese Wall Model

Problem:

- Tony advises American Bank about investments
- He is asked to advise Toyland Bank about investments
- Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank

Organization

- Organize entities into "conflict of interest" classes
- Control subject accesses to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone

Example

 If Anthony reads any *Company dataset* (CD) in a conflict of interest (COI), he can *never* read another CD in that COI

 Possible that information learned earlier may allow him to make decisions later

CW–Simple Security Condition

s can read *o* iff either condition holds:

- 1. There is an o' such that s has accessed o' and CD(o') = CD(o)
 - Meaning *s* has read something in *o*'s dataset
- **2.** For all $o' \in O$, $o' \in PR(s) \Rightarrow COI(o') \neq COI(o)$
 - Meaning s has not read any objects in o's conflict of interest class
- Ignores sanitized data (see below)
- Initially, $PR(s) = \emptyset$, so initial read request granted

Writing

- Anthony, Susan work in same trading house
- Anthony can read Bank 1's CD, Gas' CD
- Susan can read Bank 2's CD, Gas' CD
- If Anthony could write to Gas' CD, Susan can read it
 - Hence, indirectly, she can read information from Bank 1's CD, a clear conflict of interest

THE UNIVERSITY OF BRITISH COLUMBIA

ORCON Model

Copyright © 2004-2007 Konstantin Beznosov

What's the problem ORCON solves?

Problem: organization creating document wants to control its dissemination

 Example: Secretary of Agriculture writes a memo for distribution to her immediate subordinates, and she must give permission for it to be disseminated further. This is "originator controlled" (here, the "originator" is a person).

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

Role-based Access Control (RBAC)

Copyright © 2004-2007 Konstantin Beznosov

RBAC

- Access depends on role, not identity or label
 - Example:
 - Allison, administrator for a department, has access to financial records.
 - She leaves.
 - Betty hired as the new administrator, so she now has access to those records
 - The role of "administrator" dictates access, not the identity of the individual.

RBAC (NIST Standard)

RBAC with General Role Hierarchy

Constrained RBAC

Key Points

Integrity policies

- deal with trust
 - As trust is hard to quantify, these policies are hard to evaluate completely
 - Look for assumptions and trusted users to find possible weak points in their implementation
- Biba based on multilevel integrity
- Clark-Wilson focuses on separation of duty and transactions

Hybrid policies

- deal with both confidentiality and integrity
- Different combinations of these
- ORCON model neither MAC nor DAC
 - Actually, a combination
- RBAC model controls access based on subject's role(s)

