
Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Developing Secure Software

EECE 412
Session 21

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

What’s cell phones, ATMs, air
traffic control systems,

emergency service systems,
healthcare equipment, and

PDAs have in common?

3

Security break-ins are all too prevalent

Internet security incidents reported to CERT

4

Vulnerability Report Statistics

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Why are there so many
vulnerabilities in software?

6

What will happen in a moment?

7

What makes simple mechanical systems predictable?
 Linearity (or, piecewise linearity)
 Continuity (or, piecewise continuity)
 Small, low-dimensional statespaces

Systems with these properties are
(1) easier to analyze, and (2) easier to test.

0

2

4

6

8

10

12

1 2

x

y

8

 Computers enable highly complex systems
 Software is taking advantage of this

• Highly non-linear behavior; large, high-dim. state spaces

9

Other software properties make
security difficult

The Trinity of Trouble

 Connectivity
• The Internet is everywhere

and most software is on it

 Complexity
• Networked, distributed,

mobile, feature-full

 Extensibility
• Systems evolve in

unexpected ways and are
changed on the fly .NET

The network is

the computer.

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

How Are Security Bugs
Different?

11

When is a security bug
not like a bug?

 Traditional non-security bugs -- often
defined as a violation of a specification.

 Security bugs -- additional behavior, not
originally intended
• Meanwhile, it is doing what it is supposed to do
• Traditional techniques not good at finding
• Even in inspections, tend to look for

• missing behavior
• incorrect behavior

• Neglect to look for ... undesirable side-effects

12

Intended vs. Implemented Behavior
Traditional faults

Intended
Functionality

Actual
Software
Functionality

Unintended,
undocumented,
unknown
functionality

13

Traditional faults

 Incorrect
• Supposed to do A but did B instead

 Missing
• Supposed to do A and B but did only A.

14

Security Bugs

 Side effects
• Supposed to do A, and it did.
• In the course of doing A, it also did B

 Monitoring for side effects and their
impact on security can be challenging
• Side effects can be subtle and hidden
• Examples: file writes, registry entries, extra

network packets with unencrypted data

15

Security problems are complicated
Implementation Flaws

 Buffer overflow
• String format

 Race conditions
• TOCTOU (time of check to

time of use)

 Unsafe environment
variables

 Unsafe system calls
• System()

 Untrusted input problems

Design Flaws
 Misuse of cryptography
 Compartmentalization

problems in design
 Privileged block protection

failure (DoPrivilege())
 Catastrophic security

failure (fragility)
 Type safety confusion error
 Insecure auditing
 Broken or illogical access

control
 Method over-riding

problems (subclass issues)
Which ones are more frequent?

16

The BUG: buffer overflow

 Overwriting the
bounds of data
objects

 Allocate some bytes,
but the language
doesn’t care if you
try to use more
• char x[12];

 x[12] = ‘\0’;

 Why was this done?
Efficiency!

The most pervasive
security problem
today

0

5

10

15

20

25

30

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

Security Problems (CERT)

CERT Alerts

Buffer overflows

17

How Buffer Overflow Works

Adopted from the material by
Dave Hollinger

18

The Problem
void foo(char *s) {
char buf[10];
strcpy(buf,s);
printf(“buf is %s\n”,s);

}
…
foo(“thisstringistolongforfoo”);

19

Exploitation
• The general idea is to give programs

(servers) very large strings that will overflow
a buffer.

• For a server with sloppy code – it’s easy to
crash the server by overflowing a buffer.

• It’s sometimes possible to actually make the
server do whatever you want (instead of
crashing).

20

Parameters
Return Address

Calling Frame Pointer
Local Variables

A Stack Frame

00000000

Addresses

SP

SP+offset

21

Sample
Stack

18
addressof(y=3) return address
saved stack pointer
y
x
buf

x=2;
foo(18);
y=3;

void foo(int j) {
 int x,y;
 char buf[100];

 x=j;
 …

}

22

Before and After
void foo(char *s) {

char buf[100];
strcpy(buf,s);
…

address of s
return-address

saved sp

buf

address of s
pointer to pgm

Small Program

23

Building the
small program

• Typically, the small program stuffed in
to the buffer does an exec().

• Sometimes it changes the password db
or other files…

24

exec() example

#include <stdio.h>

char *args[] = {"/bin/ls", NULL};

void execls(void) {
 execv("/bin/ls",args);
 printf(“I’m not printed\n");
}

25

A Sample Program/String

• Does an exec() of /bin/ls:

unsigned char cde[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0”
“\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
“\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/ls";

26

Sample Overflow Program
unsigned char cde[] = "\xeb\x1f\…

void tst(void) {
 int *ret;
 ret = (int *)&ret+2; // pointer arith!
 (*ret) = (int) cde; //change ret addr
}

int main(void) {
 printf("Running tst\n");
 tst();
 printf("foo returned\n");
}

27

Using NOPs

Real program
(exec /bin/ls or whatever)

new return address

nop instructions

Can point

anywhere

in here

28

Estimating the Location

Real program

new return address

nop instructions

new return address

new return address
new return address

new return address
new return address

29

vulnerable.c
void foo(char *s) {
 char name[200];
 strcpy(name,s);
 printf("Name is %s\n",name);
}
int main(void) {
 char buf[2000];
 read(0,buf,2000);
 foo(buf);
}

30

Pervasive C problems lead to bugs

 Calls to watch out for

 Hundreds of such calls
 Use static analysis to find these problems

• ITS4, SourceScope

 Careful code review is necessary

Instead of: Use:

gets(buf) fgets(buf, size, stdin)

strcpy(dst, src) strncpy(dst, src, n)

strcat(dst, src) strncat(dst, src, n)

sprintf(buf, fmt, a1,…) snprintf(buf, fmt, a1, n1,…)

(where available)

*scanf(…) Your own parsing

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

How to Develop
Secure Software?

32

Some Guidelines

1. Reduce the number of all defects by order of
magnitude

2. Build security in your development process
from beginning

3. Practice principles of designing secure systems
4. Know how systems can be compromised
5. Develop and use guidelines and checklists
6. Choose safer languages, VMs, OSs, etc.
7. Provide tool support

33

Why Software Quality is Important?

According to CERT/CC:
 over 90% of software security vulnerabilities are

caused by known software defect types
 most software vulnerabilities arise from common

causes
• top ten account for 75% of vulnerabilities

 One design or implementation defect is injected
for every 7 to 10 lines of new and
changed code produced
• Even if 99% is removed,

 1/1K left (40K defects in Win XP)

34

1. Produce Quality Software

 Use well structured effective processes
• e.g., Capability Maturity Model (CMM), *-CMM

 Use precise requirements and
specifications
• Formal methods

• e.g., Praxis Critical Systems approach
– 0.75-0.04 defects/KLOC

• CleanRoom
– 0.08 defects/KLOC

35

2. Build Security into
Development Process

review,
validation

risk analysis
external
review

static
security
analysis

Risk Analysis

Penetration
Testing

Adapted from
D. Verdon and G. McGraw, "Risk analysis in software design," IEEE Security & Privacy, vol. 2, no. 4, 2004, pp. 79-84.

Requirements
Definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
Maintenance

arch. styles,
design

principles

security tests,
test depth
analysis,

validation

security
requirements
(guidelines,

analysis, review)

languages,
tools,

standards,
change

tracking
…

36

Follow Best Practices
 These best practices

should be applied
throughout the lifecycle

 Tendency is to “start at
the end” (penetration
testing) and declare
victory
• Not cost effective
• Hard to fix problems

 Start as early as possible

 Abuse cases
 Security requirements

analysis
 Architectural risk analysis
 Risk analysis at design
 External review
 Test planning based on

risks
 Security testing

(malicious tests)
 Code review with static

analysis tools

37

3. Practice principles of
designing secure systems

Principles of Designing Secure Systems
1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Privilege
7. Least Common Mechanism
8. Psychological Acceptability
9. Defense in depth
10. Question assumptions

38

4. Know How Systems Can Be Compromised
1. Make the Client Invisible
2. Target Programs That Write to Privileged OS

Resources
3. Use a User-Supplied Configuration File to Run

Commands That Elevate Privilege
4. Make Use of Configuration File Search Paths
5. Direct Access to Executable Files
6. Embedding Scripts within Scripts
7. Leverage Executable Code in Nonexecutable

Files
8. Argument Injection
9. Command Delimiters
10. Multiple Parsers and Double Escapes
11. User-Supplied Variable Passed to File System

Calls
12. Postfix NULL Terminator
13. Postfix, Null Terminate, and Backslash
14. Relative Path Traversal
15. Client-Controlled Environment Variables
16. User-Supplied Global Variables (DEBUG=1,

PHP Globals, and So Forth)
17. Session ID, Resource ID, and Blind Trust
18. Analog In-Band Switching Signals (aka “Blue

Boxing”)
19. Attack Pattern Fragment: Manipulating

Terminal Devices
20. Simple Script Injection
21. Embedding Script in Nonscript Elements
22. XSS in HTTP Headers
23. HTTP Query Strings

24. User-Controlled Filename
25. Passing Local Filenames to Functions That

Expect a URL
26. Meta-characters in E-mail Header
27. File System Function Injection, Content Based
28. Client-side Injection, Buffer Overflow
29. Cause Web Server Misclassification
30. Alternate Encoding the Leading Ghost

Characters
31. Using Slashes in Alternate Encoding
32. Using Escaped Slashes in Alternate Encoding
33. Unicode Encoding
34. UTF-8 Encoding
35. URL Encoding
36. Alternative IP Addresses
37. Slashes and URL Encoding Combined
38. Web Logs
39. Overflow Binary Resource File
40. Overflow Variables and Tags
41. Overflow Symbolic Links
42. MIME Conversion
43. HTTP Cookies
44. Filter Failure through Buffer Overflow
45. Buffer Overflow with Environment Variables
46. Buffer Overflow in an API Call
47. Buffer Overflow in Local Command-Line

Utilities
48. Parameter Expansion
49. String Format Overflow in syslog()

39

Attack pattern examples

 Exploit race
condition

 Provide unexpected
input

 Bypass input
validation

40

5. Develop Guidelines and Checklists
Example from Open Web Application Security Project (www.owasp.org):
 Validate Input and Output
 Fail Securely (Closed)
 Keep it Simple
 Use and Reuse Trusted Components
 Defense in Depth
 Security By Obscurity Won't Work
 Least Privilege: provide only the privileges absolutely required
 Compartmentalization (Separation of Privileges)
 No homegrown encryption algorithms
 Encryption of all communication must be possible
 No transmission of passwords in plain text
 Secure default configuration
 Secure delivery
 No back doors

Secure Programming How-Tos

David Wheeler's Secure Programming for
Linux and UNIX How-To

•http://www.dwheeler.com/secure-programs
Secure UNIX Programming FAQ

•http://www.whitefang.com/sup/secure-
faq.html

OWASP (Open Web Application Security
Project) Guide

•http://www.owasp.org
Etc... (Google "secure programming")

42

6. Choose Safer Languages, VMs,
OSs, etc.

 C or C++?
 Java or C++?
 Managed C++ or vanilla C++?
 .NET CLR or JVM?
 Windows XP or Windows 2003?
 Linux/MacOS/Solaris or Windows?

43

7. Make Developers’ Life Easier:
Give Them Good Tools

 automated tools for formal methods
• http://www.comlab.ox.ac.uk/archive/formal-

methods.html

 code analysis tools
• RATS http://www.securesw.com/rats
• Flawfinder http://www.dwheeler.com/flawfinder
• ITS4 http://www.cigital.com/its4
• ESC/Java

http://www.niii.kun.nl/ita/sos/projects/escframe.html
• PREfast, PREfix, SLAM www.research.microsoft.com
• Fluid http://www.fluid.cmu.edu
• JACKPOT research.sun.com/projects/jackpot
• Many more …

Relevant Books

High Level
•Secure Coding,
Principles and Practices
(M.G. Graff and K.R. Van
Wyk 2003)

Technical
•Secure Programming
Cookbook (J. Viega and
M. Messier)
•Writing Secure Code,
2nd Edition (Howard and
Leblanc)

Free Relevant Books

Improving Web Application Security:
Threats and Countermeasures Roadmap

•J.D. Meier, Alex Mackman, Michael Dunner,
Srinath Vasireddy, Ray Escamilla and Anandha
Murukan
 Microsoft Corporation
•MSDN Library, June 2003
•http://msdn.microsoft.com/library/default.asp?
url=/library/en-
us/dnnetsec/html/ThreatCounter.asp

