
Group 10

1

Abstract— This paper discusses the design of a data hiding

application using steganography. Steganography is the term used

to describe the hiding of data in images to avoid detection by

attackers. Steganalysis is the method used by attackers to

determine if images have hidden data and to recover that data.

The application discussed in this paper ranks images in a users

library based on their suitability as cover objects for some data.

By matching data to an image, there is less chance of an attacker

being able to use steganalysis to recover the data. Before hiding

the data in an image the application first encrypts it. The

application was built to adhere to the secure system development

principles of defense in depth, open design, and psychological

acceptability. The authors believe that the steganography method

proposed in this paper and illustrated by the application is

superior to that used by current steganography tools.

Index Terms—Steganography Application, Data Hiding, Image

Ranking, Encryption Alternative

I. INTRODUCTION

HIS document discusses our 412 design project, which

was to design a data hiding application using

steganography. The purpose of this project was to create a

user friendly steganography application that allows users to

hide private data in image files. Our goal was to make our

steganography application less vulnerable to steganalysis than

the existing steganography tools on the market.

 Steganography is the process of hiding a secret message

within another message. Steganography can be an invaluable

tool in maintaining confidentiality, which is one of the three

policies computer security is concerned with, along with

integrity and availability.

 The importance of steganography lies in the fact that it hides

the very existence of the secret it is protecting. Attackers are

threats because they attempt to damage or gain access to assets

by taking advantage of these asset’s vulnerabilities.

Steganography makes the job of the attacker more difficult

because the very existence of the asset is hidden

 The importance of steganography in maintaining

confidentiality can be illustrated with a simple example.

Imagine two coworkers, Alice and Bob, are communicating

with each other over the internet. Eve, an attacker, has access

to this communication link, so she eavesdrops on Alice and

Bob’s communications. If Alice is asking Bob if he is free for

lunch, then Alice probably does not mind if Eve reads this

message. Thus, Alice can send her query to Bob along the

communication link in plain text. However, if Alice is sending

Bob confidential information, such as specifications for their

company’s latest project, then she probably does not want Eve

to be able to read these messages. Therefore, Alice will likely

encrypt her messages. A problem arises because the encrypted

text is likely garbled, nonsensical data. Thus, Eve, even

though she cannot read the encrypted messages, will know that

Alice has a secret that she is sending to Bob. Eve can then

take the encrypted message and attempt to crack it. This is a

very real problem because as computational power increases,

encryption is becoming easier to break [1]. However, if Alice

uses steganography, and hides her secret message in a generic

image file, then she can transmit her secret message to Bob

without evoking Eve’s suspicion. For instance, Alice can hide

her secret message in a picture of her garden. She can then

send the image, with the secret message hidden inside it, to

Bob. Eve will think Alice is just sending Bob a harmless

picture, so she will ignore that communication between Alice

and Bob. Thus, Alice and Bob defeat Eve.

 As mentioned in the example, attackers have more

computing power now than ever before. This means that

attackers are better able to break encryption algorithms and

these capabilities will only increase in the future. DES, an

encryption standard that was used by many national

governments, successfully withstood attacks for many years

since the mid 1970s. However, [2] mentions a cryptanalytic

attack that can break DES in only a few minutes. Another

example of a broken encryption algorithm is WEP. WEP was

designed to provide confidentiality to users on wireless

networks. [3] illustrates how WEP can be broken within

hours. DES and WEP are examples of two encryption

algorithms that were thought to be secure at the time of their

design, but were broken in the future when attackers had more

powerful computational resources. These examples prove that

encryption is not enough to stop attackers from gaining access

to confidential information. Steganography must also be

employed to protect confidential assets from being

compromised by attackers.

 Steganography applications that hide data in images

generally use a variation of least significant bit (LSB)

embedding [4]. In LSB embedding, the data is hidden in the

least significant bit of each byte in the image. The size of each

pixel depends on the format of the image and normally ranges

from 1 byte to 3 bytes. Each unique numerical pixel value

corresponds to a colour; thus, an 8-bit pixel is capable of

Design of a Data Hiding Application Using

Steganography (April 2007)

Armin Bahramshahry, Hesam Ghasemi, Anish Mitra, and Vinayak Morada

T

Group 10

2

displaying 256 different colours [5]. Given two identical

images, if the least significant bits of the pixels in one image

are changed, then the two images still look identical to the

human eye [4]. This is because the human eye is not sensitive

enough to notice the difference in colour between pixels that

are different by 1 unit [4]. Thus, steganography applications

use LSB embedding because attackers do not notice anything

odd or suspicious about an image if its pixel’s least significant

bits are modified [4].

 Unfortunately for every computer security strategy, there are

attackers who develop countermeasures to defeat that security

strategy. Steganography is no different; attackers combat

steganography using steganalysis. Steganalysis is a process

where attackers analyze an image to determine whether it has

hidden data in it. A common steganalysis approach is to graph

the pixel values of an image that is suspected of containing

hidden data. Statistical analysis is then performed on the

graphed pixel values [6]. The attackers hope to find anomalies

in the statistical analysis of these images. These anomalies

may indicate that the image contains a hidden message, and the

anomalies may offer some insight into how to extract the

hidden message. [6] claims that optimized steganalysis

techniques can detect data hidden in an image, using regular

LSB steganography techniques, with a probability ranging

from 75% - 90%, depending on the size of the hidden message.

Thus, using a good steganography algorithm is vital in hiding

secret messages within images.

 This report documents the design and development of our

data hiding application using steganography. The goal of our

application is to help users maintain their data’s

confidentiality. To achieve this goal, our application uses

defense in depth. Not only does it hide the user’s data within

an image, but it also encrypts the user’s data using the public

key RSA algorithm. A user friendly GUI was incorporated to

ensure psychological acceptability. The application does not

rely on keeping its steganography algorithm a secret, nor is

RSA a secret algorithm; thus, our application follows the

secure programming principle of open design. To combat

steganalysis, our application performs an analysis on the user’s

library of images. This analysis allows users to hide their data

in the image that is least likely to be vulnerable to steganalysis.

 Section II will describe related work that is currently

available, followed by a description of how our algorithm

works in Section III. Section IV discusses the results,

limitations and future improvements of our application.

Finally, we conclude the report in Section V.

II. RELATED WORK

There are many steganography tools which are capable of

hiding data within an image. These tools can be classified into

five categories based on their algorithms: (1) spatial domain

based tools; (2) transform domain based tools; (3) document

based tools; (4) file structure based tools; and (5) other

categories such as video compress encoding and spread

spectrum technique based tools [7].

The spatial domain based steganography tools use either the

LSB or Bit Plane Complexity Segmentation (BPCS)

algorithm. The LSB algorithm uses either a sequential or

scattered embedding schemes for hiding the message bits in

the image. In the sequential embedding scheme, the LSBs of

the image are replaced by the message bit sequentially (i.e. one

by one in order, as mentioned in the introduction). In the

scattered embedding scheme, the message bits are randomly

scattered throughout the whole image using a random

sequence to control the embedding sequence.

Two basic types of LSB modifications can be used for the

embedding schemes described above. They are LSB

replacement and LSB matching. In LSB replacement, the LSB

of the carrier is replaced by the message bit directly. On the

other hand, in LSB matching if the LSB of the cover pixel is

the same as the message bit, then it remains unchanged;

otherwise, it is randomly incremented or decremented by one.

This technique, however, requires both the sender and the

receiver to have the same original image, which makes LSB

matching very inconvenient [7].

The current Steganography tools based on the LSB

algorithms include S-Tools, Hide and Seek, Hide4PGP and

Secure Engine Professional. These tools support BMP, GIF,

PNG images and WAV audio files as the carriers [7]. Each of

these tools has unique features. S-Tools reduces the number of

colors in the image to only 32 colors. Hide and Seek makes all

the palette entries divisible by four. In addition, it forces the

images sizes to be 320x200, 320x400, 320x480, 640x400 or

1024x768 pixels. Hide4PGP embeds the message in every

LSB of an 8-bit BMP images, and in every fourth LSB of a 24-

bit BMP image. These applications are flawed because they do

not analyze the image file after it has been embedded with data

to see how vulnerable it is to steganalysis.

The transform domain based steganography tools embed the

message in the transform coefficients of the image. The main

transform domain algorithm is JSteg[7]. These applications

can only work with JPGs because most other image formats do

not perform transforms on their data.

The document based steganography tools embed the secret

message in document files by adding tabs or spaces to .txt or

.doc files [7]. These applications are limited because they only

work with document files. They also cannot hide much data

because there are a very limited number of tabs or spaces they

can reasonably be added to a document. In addition, they are

vulnerable to steganalysis because it is easy for an attacker to

notice a document file that has been embedded with additional

tabs or spaces.

The file structure based steganography tools embed the

secret message in the redundant bits of a cover file such as the

reserved bits in the file header or the marker segments in the

file format [7]. These applications cannot hide very large data

files because there are a very limited number of header or

marker segments available for embedding hidden data.

There are also steganography tools based on video

compression and spread spectrum techniques. The large size

Group 10

3

of video files provides more usable space for hiding of the

message. The spread spectrum technique spreads the energy

of embedded message to a wide frequency band, making the

hidden message difficult to detect [7]. These steganography

tools are inconvenient because they require the users to send

an entire video file every time they want to send hidden data.

III. OUR SOLUTION

As mentioned in the introduction of this paper, it is essential

that a data bearing image be statistically and visually identical

to the original image in order to avoid detection by an attacker.

This was the goal we kept in mind while designing our data

hiding application.

A. Data Hiding Algorithm

The key difference between our application and the other

programs that implement LSB embedding is that our

application ranks images based on their suitability as cover

images for some data. This allows a user to pick an image

suited for hiding particular data, which reduces the threat of

steganalysis attacks. No other application we are aware of

currently offers this functionality of matching an image to the

data to be hidden.

In the application the user first specifies the data that they

would like to hide, which can be in any file format. The

application then encrypts this data using the recipient’s RSA

public key. Once the encrypted data is obtained, the procedure

described in the following paragraph is repeated for each

image in a user’s image library.

Each bit of the encrypted data is compared to the least

significant bit of the pixel bytes in an image. The comparisons

are made starting from the first byte in the image until the last

byte that permits all the data to be hidden in that image. The

application cycles through the pixels of the image looking for

the block of bytes that results in the least number of LSB

changes. The image is then given a rank based on the

percentage of least significant bits that match the encrypted

data bits. Consider, for example 10 bits of encrypted data that

need to be hidden in an image with a bit pattern of

10000000001. If some block of bytes in the image has least

significant bits with a pattern 1000000011, this would result in

the image receiving a ranking of 90%, because nine of the ten

bits are an exact match.

Each image in the user’s library is ranked as described

above and the user is presented with this list of ranked images.

The user is then free to choose which image to use to hide the

data. The application does not automatically select the highest

ranked image. The reason this final choice is left to the user is

because while an image might be most suited to hiding the

data, the image may not be one you would like to share.

Figure 1 shows a screen shot of the graphical user interface

of the application. As can be seen the interface is intuitive and

very simple to use. This design was selected to ensure that the

application was usable by a lay person interested in a more

secure way of communicating. This is keeping with the

principle of psychological acceptability of secure software

design.

Figure 1: GUI Screen Shot

B. Encryption Algorithm

As mentioned previously, the data to be hidden is first

encrypted using the RSA public key algorithm. Encrypting the

data before hiding it provides defense in depth, and makes the

job of the attacker more difficult if their goal is to recover the

secret data.

The application uses the RSA algorithm for two reasons.

First, by using a public key algorithm the need for a private

shared key between the sender and recipient of the data is

eliminated. Shared keys are impractical because they require a

secure way of distributing the key to every person who you

may want to communicate with. A public key for a person can

be distributed fairly easily by publishing it on a website, or by

emailing it to people you expect would need to send you secret

information. Second, the RSA algorithm is also widely known

and demonstrably secure if large enough prime numbers are

used to generate the keys. Using an algorithm such as RSA

which is public knowledge is in keeping with the principle of

open design of secure software systems. Adhering to this

principle was also the reason we chose not to use our own

encryption algorithm.

IV. DISCUSSION

A. Results

This section discusses the results of using our application to

hide data in an image and corroborates the theory on which our

algorithm is based. The cover image used to hide data is

shown in Figure 2.

Group 10

4

Figure 2: Original Image

The data hidden in the file is the string ‘Meet me at the park

at noon’ encrypted using a public key of (5, 299). The image

with the hidden data is shown in Figure 3. This particular

cover image was chosen because it was ranked at 84% by our

application which indicates that 84% of the least significant

bits in the image matched the bits of data to be hidden.

Figure 3: Image with Hidden Data – High Rank

As can be seen these images are visually identical. The least

significant bits of these images were also analyzed using a

program called StegAlyzerSS developed by the Steganography

Analysis and Research Center. This program costs $2495 to

license and can be used to detect and analyze images that have

hidden data. The LSB enhancement of the original image and

that of the image with the hidden data are shown in Figure 4

and 5 respectively.

Figure 4: LSB of Original Image

Figure 5: LSB of Image with Hidden Data – High Rank

As can be seen these LSB images are almost identical.

StegAlyzerSS uses the LSBs of the image to analyze them for

hidden data.

If the data to be hidden is changed to ‘This is not a good

string to hide’ and the same public keys are used, the resulting

image with the hidden data and its LSB enhancement are

shown in Figure 6 and 7 respectively. With this string the

image was ranked at 42% by our application.

Group 10

5

Figure 6: Image with Hidden Data - Low Rank

Figure 7: LSB of Image with Hidden Data - Low Rank

As can be seen from the figures above, the image is almost

identical to the original visually. However, comparison of

Figures 4 and 7 indicated there is a perceptible difference in

the LSBs of the two images. This makes the image in Figure 6

more susceptible to steganalysis. This corroborates our

hypothesis that an image should be chosen as a cover based on

its suitability to hide particular data. Thus, our application is

an improvement over existing works because it gives users

statistical information regarding how well their data can be

hidden within a given image.

B. Limitations and Future Improvements

At the end of this project, we have a much wider view of the

current state of steganography technology and the

functionalities provided by current tools. This section

discusses the limitations of our application and possible future

improvements.

Our application currently uses the public key RSA algorithm

to encrypt the data. The problem with using RSA is that there

is currently no infrastructure in place for ensuring integrity of

an individual’s public key. Hence, we feel pretty good privacy

(PGP) would be a better alternative for the public key

encryption in a future version of the application. This is

because with PGP there is already an infrastructure in place for

distributing a person’s public key. Also, with PGP there is a

‘web of trust’ infrastructure to verify that a public key does in

fact belong to the correct person. This prevents spoofing of an

individual’s public key by attackers.

Currently, our application only supports hiding data in BMP

images. This is a limitation because most images shared by

people today are in the JPG format. The act of sending a BMP

image in itself could cause an attacker to be suspicious of the

image. Thus, an important future improvement for our

application would be extending its functionality to support

hiding data in JPG images.

Our application currently cannot hide data that is too large

to fit in any of the images in the users’ library. If large amounts

of data need to be shared between people, the application

could be extended to support breaking the data up into pieces

and hiding each of these pieces in a different image. In this

case each image would contain a special byte, so that the

receiver of the images would be able to re-assemble the data at

the other end. This idea uses a similar approach to the “modes

of operation” used to concatenate blocks of cryptographic

data.

Another approach to solving this problem of hiding large

amounts of data would be to enable data hiding in video files.

Video files are usually significantly larger than images and can

hence be used for hiding more data. However, our application

would still be able to hide data in images, thus avoiding the

inconvenience of forcing users to send video files every time

they want to send any hidden data.

V. CONCLUSION

This paper introduced the concept of steganography and

steganalysis as well as the methods for carrying these out. It

also presented the authors’ application which was

demonstrated to be more secure than current applications

against statistical attacks commonly used in steganalysis.

Recommended future improvements for the application were

presented in the last section of the paper.

We believe that steganography when combined with

encryption provides a secure means of secret communication

between two parties. Our application, with its image analysis

and ranking capability is a significant improvement on current

steganography tools.

REFERENCES

[1] J. Siegfried, C. Siedsma, B.J. Countryman, C.D. Hosmer, “Examining

the Encryption Threat,” International Journal of Digital Evidence, vol.

6, pp. 23-30, December 2004.

Group 10

6

[2] E. Biham, A. Shamir. “Differential cryptanalysis of DES-like

cryptosystems,” Journal of Cryptology, vol. 4, pp. 3-72, January 1991.

[3] A. Stubblefield, J. Ioannidis, A. D. Rubin, “A Key Recovery Attack on

the 802.11b Wired Equivalent Privacy Protocol (WEP),” ACM

Transactions on Information and System Security, vol. 7, pp. 319-332,

May 2004.

[4] R. Chandramouli, N. Memon, “Analysis of LSB based image

steganography techniques,” Image Processing, vol. 3, pp. 1019-1022,

October 2001.

[5] J. D. Foley, Computer Graphics: Principles and Practicies. Cornell:

Addison-Wesley, 1996, pp. 3.

[6] J. Fridrich, M. Long, “Steganalysis of LSB encoding in color images,”

Multimedia and Expo, vol. 3, pp. 1279-1282, July 2000.

[7] Ming, Chen, Z. Ru, N. Xinxin, and Y. Yixian, “Analysis of Current

Steganography Tools: Classifications & Features”, Information

Security Centre, Beijing University of Posts & Telecommunication,

Beijing, December 2006.

