THE UNIVERSITY OF BRITISH COLUMBIA

Public Key Cryptography

EECE 412

What is it?

- Two keys
- Sender uses recipient's public key to encrypt
- Receiver uses his private key to decrypt
- Based on trap door, one way function
- Easy to compute in one direction
- Hard to compute in other direction
- "Trap door" used to create keys
- Example: Given p and q, product $N=p q$ is easy to compute, but given N , it is hard to find p and q

How is it used?

- Encryption
- Suppose we encrypt M with Bob's public key
- Only Bob's private key can decrypt to find M
- Digital Signature
- Sign by "encrypting" with private key
- Anyone can verify signature by "decrypting" with public key
- But only private key holder could have signed
- Like a handwritten signature (and then some)

Topic Outline

- The Random Oracle model for Public Key Cryptosystems
- Public key encryption and trapdoor one-way permutations
- Digital signatures
- Looking under the hood
- Knapsack
- RSA
- Uses of Public Crypto
- The order of sign and encrypt

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

- Public Key Encryption Scheme:
- Key pair (KR, KR ${ }^{-1}$) generation function from random string R
- $K R \rightarrow K R^{-1}$ is infeasible
- $C=\{M)_{K R}$
- $M=\{C)_{K R^{-1}}$

- In:
- fixed size short string (plaintext) M,
- Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

- Public Key Signature Scheme:
- Key pair ($\sigma R, \mathrm{VR}$) generation function
- VR $\rightarrow \sigma R$ is infeasible
- $S=\operatorname{Sig}_{o \mathrm{or}}(\mathrm{M})$
- $\{$ True, False $\}=\operatorname{Ver}_{\mathrm{VR}}(\mathrm{S})$

	Signing	Verifying
Input	Any string $\mathrm{M}+{ }_{\sigma R}$	$\mathrm{~S}+\mathrm{VR}$
Output	$\mathrm{S}=$ hash(M) \| cipher block	"True" or "False"

Looking Under the Hood

Knapsack

Knapsack Problem

- Given a set of n weights $W_{0}, W_{1}, \ldots, W_{n-1}$ and a sum S, is it possible to find $a_{i} \in\{0,1\}$ so that

$$
S=a_{0} W_{0}+a_{1} W_{1}+\ldots+a_{n-1} W_{n-1}
$$

(technically, this is "subset sum" problem)

- Example
- Weights (62,93,26,52,166,48,91,141)
- Problem: Find subset that sums to $S=302$
- Answer: 62+26+166+48=302
- The (general) knapsack is NP-complete

Knapsack Problem

- General knapsack (GK) is hard to solve
- But superincreasing knapsack (SIK) is easy
- SIK each weight greater than the sum of all previous weights
- Example
- Weights $(2,3,7,14,30,57,120,251)$
- Problem: Find subset that sums to $\mathrm{S}=186$
- Work from largest to smallest weight
- Answer: 120+57+7+2=186

Knapsack Cryptosystem

1. Generate superincreasing knapsack (SIK)
2. Convert SIK into "general" knapsack (GK)
3. Public Key: GK
4. Private Key: SIK plus conversion factors

- Easy to encrypt with GK
- With private key, easy to decrypt (convert ciphertext to SIK)
- Without private key, must solve GK (???)

Knapsack Cryptosystem

- Let $(2,3,7,14,30,57,120,251)$ be the SIK
- Choose $\mathrm{m}=41$ and $\mathrm{n}=491$ with m, n relatively prime and n greater than sum of elements of SIK
- General knapsack
$2 \cdot 41 \bmod 491=82$
$3 \cdot 41 \bmod 491=123$
$7 \cdot 41 \bmod 491=287$
$14 \cdot 41 \bmod 491=83$
$30 \cdot 41 \bmod 491=248$
$57 \cdot 41 \bmod 491=373$
$120 \cdot 41 \bmod 491=10$
$251 \cdot 41 \bmod 491=471$
- General knapsack: $(82,123,287,83,248,373,10,471)$

Knapsack Example

- Private key: $(2,3,7,14,30,57,120,251), \mathrm{n}=491, \mathrm{~m}^{-1}=12$
- $\mathrm{m}^{-1} \bmod \mathrm{n}=41^{-1} \bmod 491=12$
- Public key: $(82,123,287,83,248,373,10,471)$
- Throw away: m=41
- Example: Encrypt 10010110

$$
82+83+373+10=548
$$

- To decrypt,
- $548 \cdot 12=193 \bmod 491$
- Solve (easy) SIK with S = 193
- Obtain plaintext 10010110

Knapsack Weakness

- Trapdoor: Convert SIK into "general" knapsack using modular arithmetic
- One-way: General knapsack easy to encrypt, hard to solve; SIK easy to solve
- This knapsack cryptosystem is insecure
- Broken in 1983 with Apple II computer
- The attack uses lattice reduction
- "General knapsack" is not general enough!
- This special knapsack is easy to solve!

RSA

- Invented by Cocks (GCHQ), independently, by Rivest, Shamir and Adleman (MIT)
- Let p and q be two large prime numbers
- Let $N=p q$ be the modulus
- Choose e relatively prime to ($p-1$) $(q-1)$
- Totient: $\Phi(N)=(p-1)(q-1)$, the number of numbers less than N that are relatively prime to N.
- Find d s.t. $e^{* d}=1 \bmod (p-1)(q-1)$
- Public key: is (N, e),
- Private key: is d
- Throw Away: p,q

RSA

- To encrypt message M compute
- $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{N}$
- To decrypt C compute
- M = C ${ }^{d} \bmod N$
- Recall that e and N are public
- If attacker can factor N, he can use e to easily find d since ed = $1 \bmod (p-1)(q-1)$
- Factoring the modulus breaks RSA
- It is not known whether factoring is the only way to break RSA

Simple RSA Example

- Example of RSA
- Select "large" primes $p=11, q=3$
- Then $N=p q=33$ and $(p-1)(q-1)=20$
- Choose e = 3 (relatively prime to 20)
- Find d such that ed = 1 mod 20 , we find that $\mathrm{d}=7$ works
- Public key: $(\mathrm{N}, \mathrm{e})=(33,3)$
- Private key: $\mathrm{d}=7$

Simple RSA Example

- Public key: $(\mathrm{N}, \mathrm{e})=(33,3)$
- Private key: d=7
- Suppose message M = 8
- Ciphertext C is computed as

$$
C=M^{e} \bmod N=8^{3}=512=17 \bmod 33
$$

- Decrypt C to recover the message M by

$$
M=C^{d} \bmod N=17^{7}=410,338,673
$$

$$
=12,434,505 * 33+8=8 \bmod 33
$$

Uses for Public Key Crypto

- Confidentiality
- Transmitting data over insecure channel
- Secure storage on insecure media
- Authentication
- Digital signature provides integrity and non-repudiation
- No non-repudiation with symmetric keys

Non-non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- Problem: Bob knows Alice placed the order, but he can't prove it

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt
 vS
 Encrypt and Sign

Public Key Notation

- Sign message M with Alice's private key: $[\mathrm{M}]_{\text {Alice }}$
- Encrypt message M with Alice's public key: $\{\mathrm{M}\}_{\text {Alice }}$
- Then
$\left\{[\mathrm{M}]_{\text {Alice }}\right\}_{\text {Alice }}=M$
$\left[\{\mathrm{M}\}_{\text {Alice }}\right]_{\text {Alice }}=\mathrm{M}$

Confidentiality and Non-repudiation

- Suppose that we want confidentiality and non-repudiation
- Can public key crypto achieve both?
- Alice sends message to Bob
- Sign and encrypt $\left\{[\mathrm{M}]_{\text {Alice }}\right\}_{\text {Bob }}$
- Encrypt and sign $\left[\{\mathrm{M}\}_{\text {Bob }}\right]_{\text {Alice }}$
- Can the order possibly matter? (pg. 77-79 Stamp)

Encrypt and Sign

- M = "My theory, which is mine, is

Note that Charlie cannot decrypt M
\square Q: What is the problem?
\square A: Bob misunderstands crypto!

Summary

- The Random Oracle model for Public Key Cryptosystems
- Public key encryption and trapdoor one-way permutations
- Digital signatures
- Looking under the hood
- Knapsack
- RSA
- Uses of Public Crypto
- The order of sign and encrypt

