

How is it used?

- Encryption
 - Suppose we encrypt M with Bob's public key
 - Only Bob's private key can decrypt to find M
- Digital Signature
 - Sign by "encrypting" with private key
 - Anyone can **verify** signature by "decrypting" with public key
 - · But only private key holder could have signed
 - Like a handwritten signature (and then some)

Given a set of n weights W₀,W₁,...,W_{n-1} and a sum S, is it possible to find a_i ∈ {0,1} so that

 $S = a_0 W_0 + a_1 W_1 + \dots + a_{n-1} W_{n-1}$

(technically, this is "subset sum" problem)

- Example
 - Weights (62,93,26,52,166,48,91,141)
 - Problem: Find subset that sums to S=302
 - Answer: 62+26+166+48=302
- The (general) knapsack is NP-complete

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key

23

- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

UBC

Summary

- The Random Oracle model for Public Key Cryptosystems
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures
- Looking under the hood
 - Knapsack
 - RSA
- Uses of Public Crypto
- The order of sign and encrypt
- 29