

Access Control

read: Stamp: sections 8.1-8.4, 8.8-8.10 Anderson: chapters 4, 7, 8.

Wednesday, October 24, 2007

Where We Are

Protection				Assurance				
Author	rization	Accountability	Availability		ance	se	rance	ance
		Audit	Continuity	Recovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance
		Non- Repudiati on	_	Disaster Recovery	Requiren	Desig	Developn	Operati

Authorization Mechanisms: Access Control

Definition: enforces the rules, when rule check is possible

Authorization Engine Access Decision Function

Authorization Decision Entitlement

Reference Monitor

Security Subsystem **Object**Resource
(data/methods

(data/method: menu item) Target

Mix of terms:

Authorization == Access Control Decision Authorization Engine == Policy Engine

Wednesday, October 24, 2007

3

Policies and Mechanisms

- Policies describe what is allowed
- Mechanisms control how policies are enforced

Access Matrix

Wednesday, October 24, 2007

5

Lampson's Access Control Matrix

Subjects (users) index the rows

Objects (resources) index the columns

	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Wednesday, October 24, 2007

why access matrix is not used

- Access control matrix has all relevant info
- But how to manage a large access control (AC) matrix?
- Could be 1000's of users, 1000's of resources
- Then AC matrix with 1,000,000's of entries
- Need to check this matrix before access to any resource is allowed
- Hopelessly inefficient

Wednesday, October 24, 2007

7

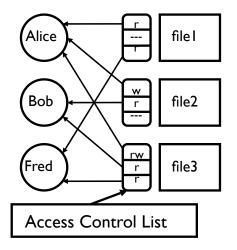
Access Control Lists

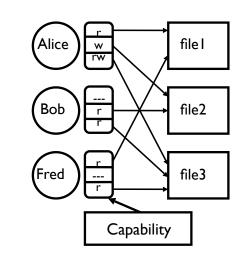
- ACL: store access control matrix by column
- Example: ACL for insurance data is in yellow

	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Wednesday, October 24, 2007

Capabilities (or C-Lists)


- Store access control matrix by row
- Example: Capability for Alice is in blue


	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Wednesday, October 24, 2007

9

ACLs vs Capabilities

- Note that arrows point in opposite directions!
- With ACLs, still need to associate users to files

Wednesday, October 24, 2007

ACLs vs Capabilities

- ACLs
 - Good when users manage their own files
 - Protection is data-oriented
 - Easy to change rights to a resource
- Capabilities
 - Easy to delegate
 - Easy to add/delete users
 - Easier to delegate rights
 - Harder to control the delegation
 - More difficult to implement
 - The "Zen of information security"

Wednesday, October 24, 2007

11

THE UNIVERSITY OF BRITISH COLUMBIA

Security Policies

what's secure system?

- Secure system
 - Starts in authorized state
 - Never enters unauthorized state
- If the system enters any of these states, it's a security violation
- Authorized state in respect to what?
- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)

Wednesday, October 24, 2007

13

THE UNIVERSITY OF BRITISH COLUMBIA

Wednesday, October 24, 2007

What's Confidentiality?

- X set of entities, I information
- I has confidentiality property with respect to X if no $x \in X$ can obtain information from I
- I can be disclosed to others
- Example:

Wednesday, October 24, 2007

15

what's confidentiality policy?

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Wednesday, October 24, 2007

What's Integrity?

- X set of entities, I information
- I has integrity property with respect to X if all x ∈
 X trust information in I
- Examples?

Wednesday, October 24, 2007

17

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information

Wednesday, October 24, 2007

Multilevel Security (MLS) Models

Wednesday, October 24, 2007

19

Classifications and Clearances

- Classifications apply to objects
- Clearances apply to subjects
- US Department of Defense uses 4 levels of classifications/clearances

TOP SECRET
SECRET
CONFIDENTIAL
UNCLASSIFIED

Clearances and Classification

- To obtain a SECRET clearance requires a routine background check
- A TOP SECRET clearance requires extensive background check
- Practical classification problems
 - Proper classification not always clear
 - Level of granularity to apply classifications
 - Aggregation flipside of granularity

Wednesday, October 24, 2007

21

Subjects and Objects

- Let O be an object, S a subject
 - O has a classification
 - S has a clearance
 - o Security **level** denoted L(O) and L(S)
- For DoD levels, we have

TOP SECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED

Wednesday, October 24, 2007

Multilevel Security (MLS)

- MLS needed when subjects/objects at different levels use same system
- MLS is a form of Access Control
- Classified government/military information
- Business example: info restricted to
 - Senior management only
 - All management
 - Everyone in company
 - General public
- Network firewall
 - Keep intruders at low level to limit damage
- Confidential medical info, databases, etc.

Wednesday, October 24, 2007

	<u> Exam</u>	bie
security level	subject	object
Top Secret	Alice	Personnel Files
Secret	Bob	E-Mail Files
Confidential	Chiang	Activity Logs
Unclassified	Fred	Telephone Lists

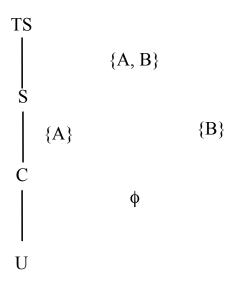
- Alice can read all files
- Chiang cannot read Personnel or E-Mail Files
- Fred can only read Telephone Lists

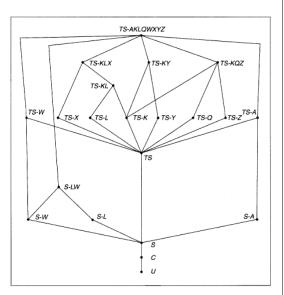
Bell-LaPadula

- BLP security model designed to express essential requirements for MLS
- BLP deals with confidentiality
 - To prevent unauthorized reading
- Recall that O is an object, S a subject
 - Object O has a classification
 - Subject S has a clearance
 - Security level denoted L(O) and L(S)

Wednesday, October 24, 2007

25

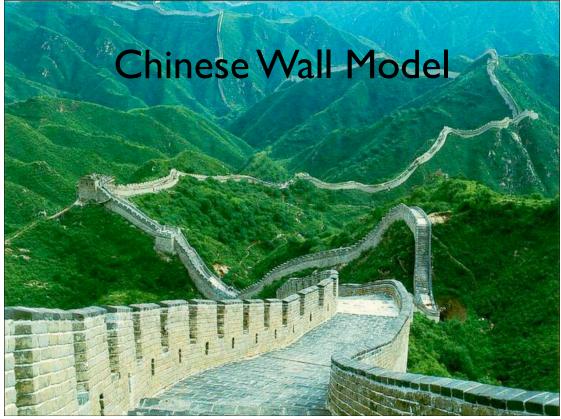

BLP rules


Simple Security Condition: S can read O if and only if $L(O) \le L(S)$

- *-Property (Star Property): S can write O if and only if $L(S) \le L(O)$
- No read up, no write down

Wednesday, October 24, 2007

The Military Lattice


Wednesday, October 24, 2007

27

Key Points Regarding Confidentiality Policies

- Confidentiality policies restrict flow of information
- Bell-LaPadula model supports multilevel security
 - Cornerstone of much work in computer security

Wednesday, October 24, 2007

Wednesday, October 24, 2007

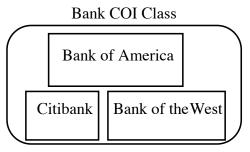
29

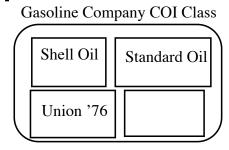
What's Chinese Wall Model

Problem:

- Tony advises American Bank about investments
- He is asked to advise Toyland Bank about investments
- Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank

Wednesday, October 24, 2007


Organization


- Organize entities into "conflict of interest" classes
- Control subject accesses to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone

Wednesday, October 24, 2007

31

Example

- If Anthony reads any Company dataset (CD) in a conflict of interest (COI), he can never read another CD in that COI
 - Possible that information learned earlier may allow him to make decisions later

Wednesday, October 24, 2007

CW-Simple Security Condition

- S can read 0 iff either condition holds:
 - 1. There is an O' such that S has accessed O' and CD(O') = CD(O)
 - 1. Meaning S has read something in O's dataset
 - 2. For all $o' \in O$, $o' \in PR(s) \Rightarrow COI(o') \neq COI(o)$
 - 1. Meaning S has not read any objects in O's conflict of interest class
- 1. Ignores sanitized data (see below)

Wednesday, October 24, 2007

33

Writing

- Anthony, Susan work in same trading house
- Anthony can read Bank I's CD, Gas' CD
- Susan can read Bank 2's CD, Gas' CD
- If Anthony could write to Gas' CD, Susan can read it
 - Hence, indirectly, she can read information from Bank I's CD, a clear conflict of

Wednesday, October 24, 2007

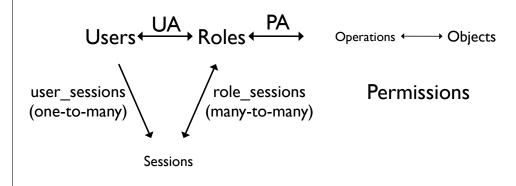
Role-based Access Control (RBAC)

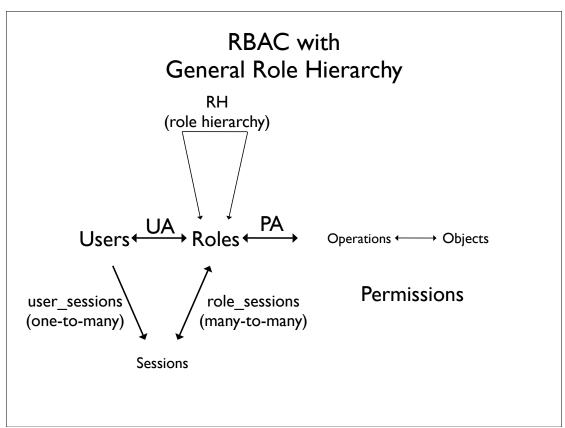

Wednesday, October 24, 2007

35

RBAC

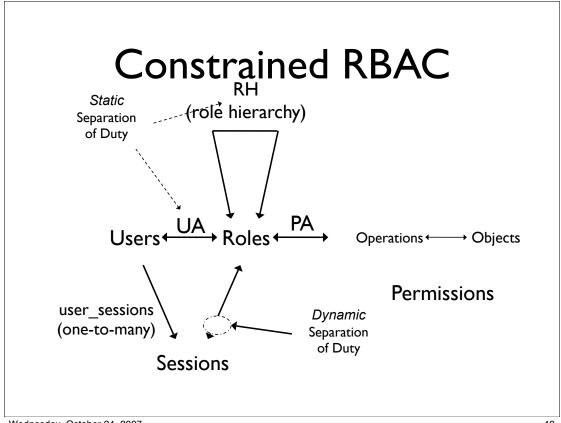
- Access depends on role, not identity or label
 - Example:
 - Allison, administrator for a department, has access to financial records.
 - She leaves.
 - Betty hired as the new administrator, so she now has access to those records


Example


Wednesday, October 24, 2007

37

RBAC (ANSI Standard)



Wednesday, October 24, 2007

Wednesday, October 24, 2007

39

Wednesday, October 24, 2007