

THE UNIVERSITY OF BRITISH COLUMBIA

Introduction to Cryptography

Module Outline

- Historical background
 - Classic ciphers
 - One-time pad
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures

Crypto

- Cryptology The art and science of making and breaking "secret codes"
- Cryptography making "secret codes"
- Cryptanalysis breaking "secret codes"
- **Crypto** all of the above (and more)

How to Speak Crypto

- A cipher or cryptosystem is used to encrypt the plaintext
- The result of encryption is *ciphertext*
- We *decrypt* ciphertext to recover plaintext
- A key is used to configure a cryptosystem
- A symmetric key cryptosystem uses the same key to encrypt as to decrypt
- A *public key* cryptosystem uses a *public key* to encrypt and a *private key* to decrypt

basic assumptions in crypto

- assumptions
 - I. The system is completely known to the attacker
 - 2. Only the key is secret
- Also known as Kerckhoffs Principle
 - Crypto algorithms are not secret

Kerckhoff's Principle

"The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key"

> Auguste Kerckhoff von Nieuwenhof Dutch linguist 1883

basic assumptions in crypto

- assumptions
 - I. The system is completely known to the attacker
 - 2. Only the key is secret
- Also known as Kerckhoffs Principle
 - Crypto algorithms are not secret
- Why do we make this assumption?
 - Experience has shown that secret algorithms are weak when exposed
 - Secret algorithms never remain secret
 - Better to find weaknesses beforehand

Historical Background

- To read:
- 5.1-5.2 Anderson's book
- Chapter 2 (except 2.3.6 & 2.3.8) Stamp's book

two types of ciphers

- substitution
- transposition

Letter Indices in English Alphabet

Α	В	С	D	Ε	F	G	Н	Ι	J	К	L	Μ
0	I	2	3	4	5	6	7	8	9	10		12
N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z

20 21 22 23 24

Caesar Cipher

- Plaintext is HELLO WORLD
- Change each letter to the third letter following it (X goes to A,Y to B, Z to C)
 - Key is 3, usually written as letter 'D'

• Ciphertext: KHOOR ZRUOG Plain HELLOWORLD Key DDDDDDDDD

a simple attack

- how to attack Caesar Cipher?
- exhaustive/brute-force (key) search
- Trudy 2⁴⁰
- 2⁵⁶ -- 18 hours
- 2⁶⁴ -- 6 months
- how to increase key space for substitution cipher?

Monoalphabetic Substitution Cipher

Invented by Arabs in 8th or 9th centuries

Plain HELLOWORLD

Key

Cipher AGVVYEYZVS

Frequency Analysis of English Letters

Polyalphabetic Vigenère Cipher

proposed by Blaise de Vigenere from the court of Henry III of France in the sixteenth century

Like Cæsar cipher, but use a phrase

- Example
 - Message: TO BE OR NOT TO BE THAT IS THE QUESTION
 - Key: RELATIONS
 - Encipher using Cæsar cipher for each letter:

Plain TO BE OR NOT TO BE THAT IS THE QUESTION Key RELATIONS RELATION SRELATIONSREL Cipher KS ME HZ BBL KS ME MPOG AJ XSE J CSF LZSY

Double Transposition

Permute rows and columns

	col 1	col 3	col 2
row 3	x	t	a
row 5	w	x	n
row 1	a	t	t
row 4	x	a	d
row 2	a	k	с

- Plaintext: attackxatxdawn
- Ciphertext: xtawxnattxadakc
- Key: matrix size and permutations (3,5,1,4,2) and (1,3,2)

Cryptanalysis: Terminology

- Cryptosystem is secure if best know attack is to try all keys
- Cryptosystem is **insecure** if any shortcut attack is known
- By this definition, an insecure system might be harder to break than a secure system!

One-Time Pad

A Vigenère cipher with a random key at least as long as the message

- Provably unbreakable
- Why?

Plain text	DOIT DONT			
Key	AJIY	AJDY		
Cipher text	D X Q R	DXQR		

 Warning: keys *must* be random, or you can attack the cipher by trying to regenerate the key

Little Bit of History

91 years ago,
 January 19, 1917 ...

Codebook

- Literally, a book filled with "codewords"
- Zimmerman Telegram encrypted via codebook

Februar	13605
fest	13732
finanzielle	13850
folgender	13918
Frieden	17142
Friedenschluss	17149

:

• Modern block ciphers are codebooks!

Zimmerman Telegram

- One of most famous codebook ciphers ever
- Led to US entry in WWI
- Ciphertext shown here...

Bead the	following talegra h hereof, which	un, subject to t are bareby agre	ter terms	TIC	X	via Gal	veston	9 Dal	130
GI	ERMAN LE	GATION	10.0	V.Y	2		dig (JAN LE	1.1811
1 p	MEXICO	CITY	E KARA	10.	体管理			A	轻轻
30	13042	13401	8501	115 3	528 41	6 172	14 04	91 11	310
8147	18222	21560	1024	7 1151	8 2367	7 . 138	05 34	94 14	936
8092	5905	11311	10392	10371	0302	21290	5161	3969	5
3571	17504	11269	18276	3 - 1810	1 0317	0228	1769	4 447	3
2284	22200	- 1945	2 21589	6789	3 5569	1391	8 895	8 121	37
333	4725	4458	5905 1	7166	13851	4458	17149	14471	670
3850	12224	6929	14991	7382	15857	67893	1421	8 364	77
870	17553	67893	. 5870	5454	16102	15217	22801	1713	8
1001	17388	7440	23638	18222	6719	14331	1502	1 238	45
\$156	23552	22096	21604	4797	9497	22464	20855	4377	and a
23610	18140	22260	5905	13347	20420	39689	1373	8 206	87
929	5275	18507	52262	1340	22049	13339	11265	22295	5
0439	14814	4178	6992	8784	7632	7357	6926 1	52262	11267
1100	21272	9346	9559	22464	15874	18502	18500	1585	7
188	5376	7381	98092	16127	13486	9350	9220	76036	14219
144	2831	17920	11347	17142	11264	7667	7762	15099	9110
0482	97556	3569	3670		and the second		1		
	1) BE	PNSTOPF	F				in his
1.1.1.2	Land to Line	1-22	1 A	A La La Ver	and the second second	(注)的 (注)	- 10		1.25%

Zimmerman Telegram Decrypted

Ъэ

A. CELED

- British had recovered partial codebook
- Able to fill in missing parts

"We intend to begin on the first of February unrestricted submarine warfare. We shall endeavos

TELEGRAM RECEIVED.

in spite of this to keep the United States of america neutral. In the event of this not succeeding, we make Mexico a proposal of alliance on the following basis: make war together, make peace together, generous financial support and an understanding on our part that Mexico is to reconquer the lost territory in Texas, New Mexico, and arizona. The settlement in detail is left to you. You will inform the President of the above most . secretly as soon as the outbreak of war with the United States of America is certain and add the suggestion that he should, on his own initiative. Le Japan to immediate adherence and at the same time mediate between Japan and ourselves. Please call the President's attention to the fact that the ruthless employment of our submarines now offers the prospect of compelling England in a few months to make peace." Signed, ZINDERNARM.

THE UNIVERSITY OF BRITISH COLUMBIA

Random Oracle Model

Read Anderson 5.3

Random Function as Random Oracle

Oueries

Responses

In: string of any length

- Out: random string of fixed length
- Applications:
 - One-way functions
 - Hash functions
 - Message digests
 - Time stamping

Properties

efficiency -- easy to compute h(x) for any x. one-way -- given any y, it's infeasible to find x, s.t., h(x) = yweak collision resistance -- given x and h(x), it's infeasible to y != x, s.t. h(y) == h(x)strong collision resistance -- infeasible to find any x != y, s.t., h(x) == h(y)

Random Generator (Stream Cipher)

as Random Oracle

- In:
 short string (key)
 length of the output
 Out: long random stream of bits (keystream)
 Applications:
 Communications
 - Use seed

encryption

Storage encryption

Example: A5 stream cipher for GSM

Random Permutation (Block Cipher)

as Random Oracle

- In
 - fixed size short string (plaintext) M,
 - DES -- 64 bits
 - Key K

- Out
 - same fixed size short string (ciphertext) C

Responses

Queries

Notation

$$\bullet C = \{ M \}_{K}$$

Properties

Invertible

Public Key Encryption and Trap-door One-Way Permutation

as Random Oracle

- Public Key Encryption Scheme:
 - Key pair (KR, KR⁻¹) generation function from random string R
 - $KR \rightarrow KR^{-1}$ is infeasible
 - C = {M) _{KR}
 - M = {C) _{KR}⁻¹
- In:
 - fixed size short string (plaintext) M,
 - Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

- Public Key Signature Scheme:
 - Key pair (σ R,VR) generation function ____
 - VR $\rightarrow \sigma R$ is infeasible
 - $S = Sig_{\sigma R}(M)$
 - {True, False} = Ver_{VR}(S)

	Signing	Verifying		
Input	Any string M + σ R	S +VR		
Output	S = hash(M) cipher block	"True" or "False"		

Summary

- Historical background
 - Caesar and Vigenère ciphers
 - One-time pad
 - One-way functions
 - Asymmetric cryptosystems
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures

