

Access Control

read:

Stamp: sections 8.1-8.4, 8.8-8.10

Anderson: chapters 4, 8, 9, 10.

learning objectives

you should be able to

- explain confidentiality and integrity in terms of security policies
- explain c-lists and ACLs and differences between the two
- explain main access control poly models (BLP, CW, RBAC, DAC)
- convert a policy from one model to another

Where We Are

Protection				Assurance				
Author	rization	Accountability	Avail	ability	ance	ce	rance	rance -
Control		Audit	Continuity	Recovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance
Access (Non- Repudiati on)	Disaster Recovery	Requirem	Desig	Developn	Operati

THE UNIVERSITY OF BRITISH COLUMBIA

Anderson "If you say that your problem can be solved with cryptography, then you don't understand your problem and you don't understand cryptography."

Roger Needham

Authorization Mechanisms: Access Control

Definition: enforces the rules, when rule check is possible

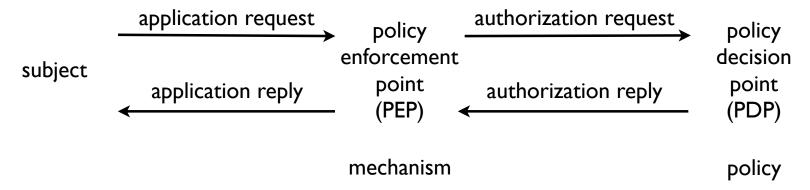
Authorization Engine

Access Decision Function PDP

Authorization
Decision
Entitlement

Reference Monitor
PEP

Authorization
Decision
Character


Resource
(data/methods
menu item)
Target

Mix of terms:

Authorization == Access Control Decision Authorization Engine == Policy Engine Security Subsystem

Policies and Mechanisms

- Policies describe what is allowed
- Mechanisms control how policies are enforced

Access Matrix

Lampson's Access Control Matrix

Subjects (users) index the rows

Objects (resources) index the columns

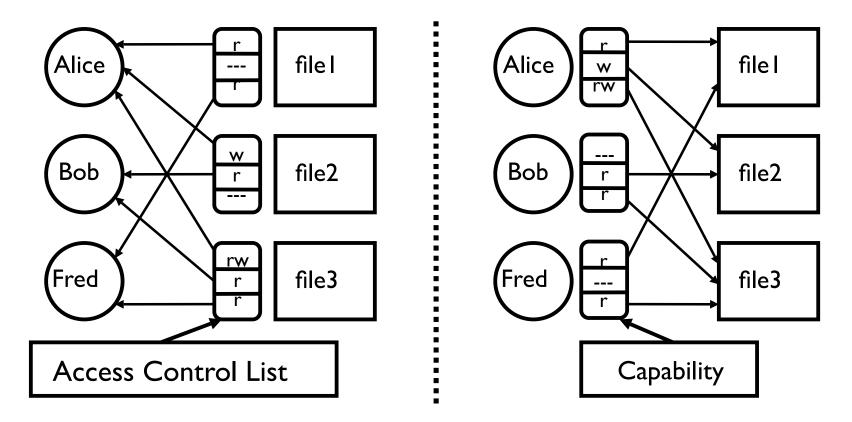
	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

why access matrix is not used

- Access control matrix has all relevant info
- But how to manage a large access control (AC) matrix?
- Could be 1,000's of users, 1,000's of resources
- Then AC matrix with 1,000,000's of entries
- Need to check this matrix before access to any resource is allowed
- Hopelessly inefficient

Access Control Lists

- ACL: store access control matrix by column
- Example: ACL for insurance data is in yellow


	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Capabilities (or C-Lists)

- Store access control matrix by row
- Example: Capability for Alice is in blue

	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

ACLs vs Capabilities

- Note that arrows point in opposite directions!
- With ACLs, still need to associate users to files

ACLs vs Capabilities

ACLs

- Good when users manage their own files
- Protection is data-oriented
- Easy to change rights to a resource

Capabilities

- Easy to delegate
- Easy to add/delete users
- Easier to delegate rights
- Harder to control the delegation
- More difficult to implement
- The "Zen of information security"

Security Policies

what's secure system?

- Secure system
 - Starts in authorized state
 - Never enters unauthorized state
- If the system enters any of these states, it's a security violation
- Authorized state in respect to what?
- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)

THE UNIVERSITY OF BRITISH COLUMBIA

Friday, October 17, 2008

What's Confidentiality?

- X set of entities, I information
- I has confidentiality property with respect to X if no $x \in X$ can obtain information from I
- I can be disclosed to others

- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

what's confidentiality policy?

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

What's Integrity?

- X set of entities, I information
- I has integrity property with respect to X if all $x \in$
 - X trust information in I
- Examples?

Types of Access Control Policies

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information

Multilevel Security (MLS) Models

Classifications and Clearances

- Classifications apply to objects
- Clearances apply to subjects
- US Department of Defense uses 4 levels of classifications/clearances

TOP SECRET
SECRET
CONFIDENTIAL
UNCLASSIFIED

Clearances and Classification

- To obtain a SECRET clearance requires a routine background check
- A TOP SECRET clearance requires extensive background check
- Practical classification problems
 - Proper classification not always clear
 - Level of granularity to apply classifications
 - Aggregation flipside of granularity

Subjects and Objects

- Let O be an **object**, S a **subject**
 - O has a classification
 - S has a clearance
 - o Security **level** denoted L(O) and L(S)
- For DoD levels, we have

TOP SECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED

Multilevel Security (MLS)

- MLS needed when subjects/objects at different levels use same system
- MLS is a form of Access Control
- Classified government/military information
- Business example: info restricted to
 - Senior management only
 - All management
 - Everyone in company
 - General public
- Network firewall
 - Keep intruders at low level to limit damage
- Confidential medical info, databases, etc.

Example

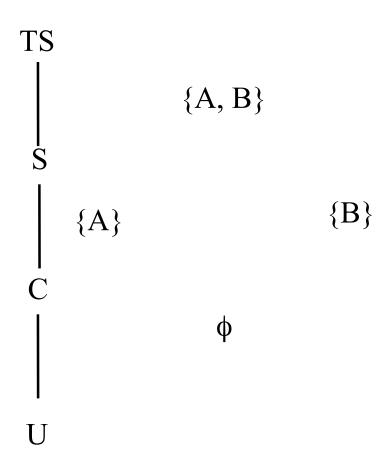
security level	subject	object
Top Secret	Alice	Personnel Files
Secret	Bob	E-Mail Files
Confidential	Chiang	Activity Logs
Unclassified	Fred	Telephone Lists

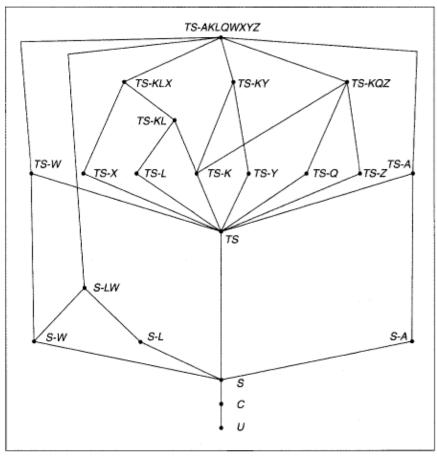
Alice can read all files

Chiang cannot read Personnel or E-Mail Files

Fred can only read Telephone Lists

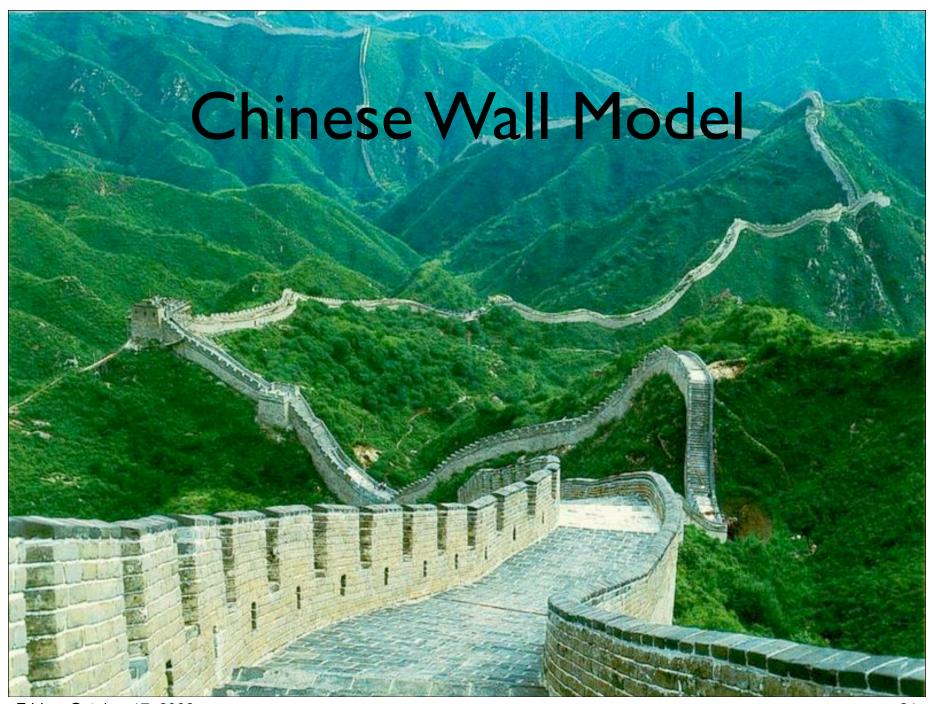
Bell-LaPadula


- BLP security model designed to express essential requirements for MLS
- BLP deals with confidentiality
 - To prevent unauthorized reading
- Recall that O is an object, S a subject
 - Object O has a classification
 - Subject S has a clearance
 - Security level denoted L(O) and L(S)


BLP rules

Simple Security Condition: S can read O if and only if $L(O) \le L(S)$

- *-Property (Star Property): S can write O if and only if $L(S) \le L(O)$
- No read up, no write down

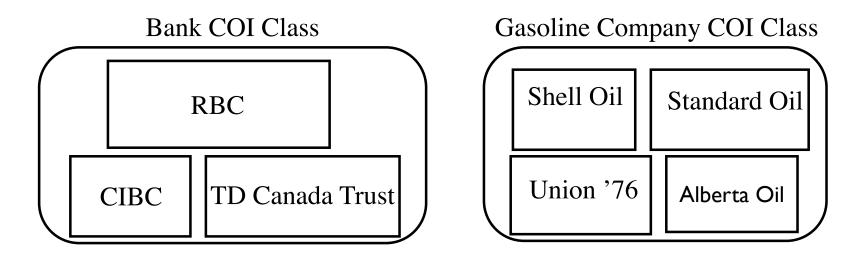

The Military Lattice

Key Points Regarding Confidentiality Policies

- Confidentiality policies restrict flow of information
- Bell-LaPadula model supports multilevel security
 - Cornerstone of much work in computer security

Friday, October 17, 2008

What's Chinese Wall Model


Problem:

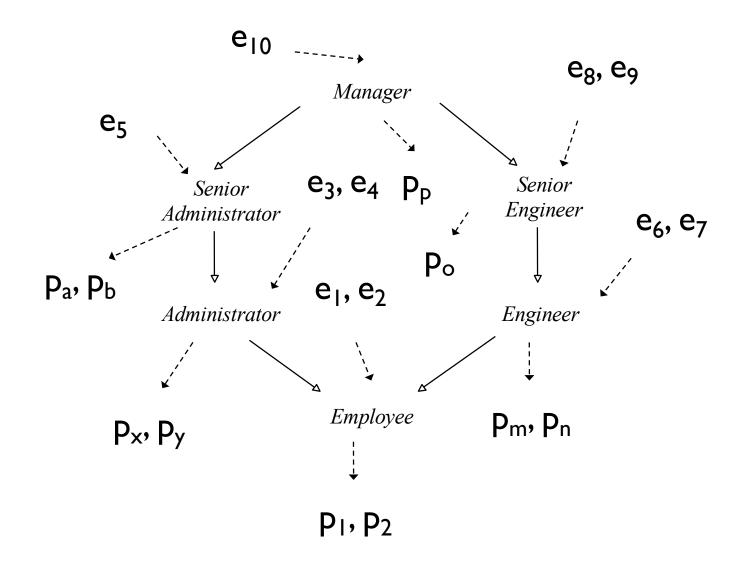
- Tony advises American Bank about investments
- He is asked to advise Toyland Bank about investments
- Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank

Organization

- Organize entities into "conflict of interest" classes
- Control subject accesses to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone

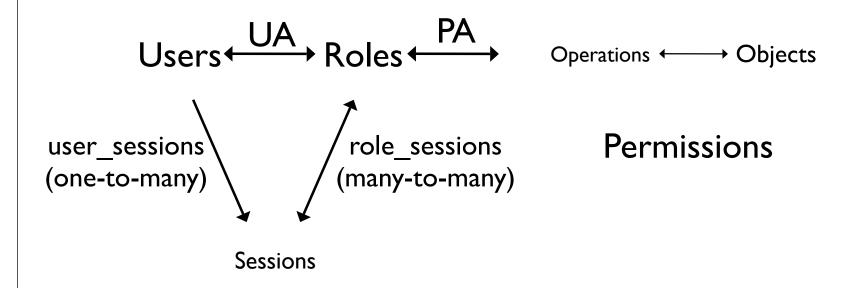
Example

- If Anthony reads any Company dataset (CD) in a conflict of interest (COI), he can never read another CD in that COI
 - Possible that information learned earlier may allow him to make decisions later

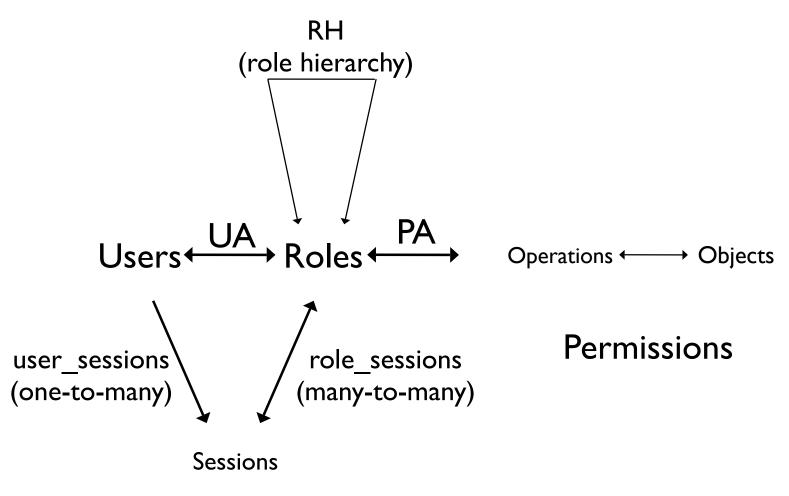


Role-based Access Control (RBAC)

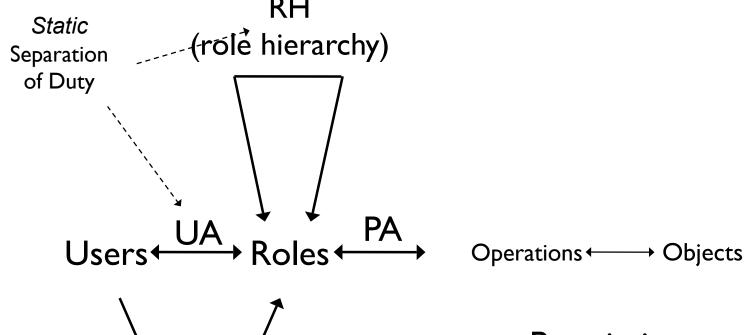
RBAC

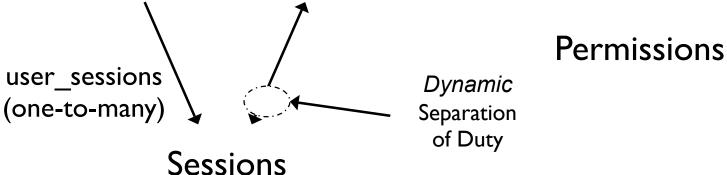

- Access depends on role, not identity or label
 - Example:
 - Allison, administrator for a department, has access to financial records.
 - She leaves.
 - Betty hired as the new administrator, so she now has access to those records
 - The role of "administrator" dictates access, not the identity of the individual.

Example


Friday, October 17, 2008

RBAC (ANSI Standard)




Friday, October 17, 2008

RBAC with General Role Hierarchy

Constrained RBAC

what we learned so far

- structure of access controls (PEP & PDP)
- access matrix
 - ACLs and capability lists
- security policies
 - confidentiality & integrity
 - types of policies (DAC, MAC, OrCon)
- BLP model
- Chinese Wall model
- RBAC model