
EECE 412, Fall 2009

Quiz #4

This quiz consists of 6 pages. Please check that you have a complete copy. You may
use both sides of each sheet if needed.

Your Family name: _________________

Your Given name: _________________

Your student ID: _________________

Name of your left neighbor: ________________

Name of your right neighbor: ________________

ATTENTION: When necessary, make reasonable assumptions and state them
clearly in your solutions.

Points Out of
1 6
2 3
3 12

TOTAL 21

Page 2 of 6

1. Consider the following example code in C.
void foo (int a, char* s) {
 char buffer[10];
 strcpy(buffer, s);
}

void main(int argc, char* argv[]) {
 foo(1, argv[1]);
}
If everything goes fine when function foo is called, then the memory layout during
execution of foo is shown in the following figure, where the thick black arrow shows how
the program counter would change on the return from foo to main.

low →

 …

buffer ← stack pointer

 ret ← return address
 a

high → s

 Figure 1.

Now, suppose a buffer overflow has occurred in foo, which resulted in the following
memory layout. Such an overflow would generally crash the program.

low →

 ???

…
← some place in the program code

buffer

← stack pointer

 overflow ← return address
 overflow

high → s

 Figure 2.

Page 3 of 6

Now, imaging that at another time, when the program was executed again, another buffer
overflow (this time more malicious) occurred, which resulted in the memory layout
shown in the following Figure 3.

low →

 …

malicious code

← stack pointer

 overflow ← return address
 overflow

high → s

 Figure 3.

Discuss three different options for mitigating or avoiding the above two types of buffer
overflow attacks. Explain which option will work and will not work for which of the
above buffer overflow attacks.

1. No execute (NX) bit would result in the program crash for the attack show in Fig.
3 but not the one in Fig. 2.

2. Canary would crash the program in the case of both attacks.

3. The use of “safe” language, e.g., Java or C#, would prevent the attacker from
overflowing the buffer and overriding the return address, which could result in an
application-level exception.

Page 4 of 6

2. Explain the difference between how SQL injection attacks and cross-site scripting
attacks work.

An SQL injection attack is an exploit that injects malicious user inputs into
dynamically constructed SQL statements; while cross-site scripting attacks injects
malicious user inputs into dynamically generated HTTP responses.

SQL injection attacks can target both server-side servers and client-side victims while
cross-site scripting attacks can only attack client-side victims that are using a web
browser.

Page 5 of 6

3. Access control. For the following two policies, determine whether they are

equivalent (i.e., users have same permissions in both policies). Explain your
answer.

a. BLP policy.

b. Hierarchical RBAC policy

Role hierarchy (RH):

Label Object Classification Subject Clearance
secret {A, B} O3 U4
secret {B} O4 U3
secret {A} O2 U2
secret { } O1 U1

secret
{A} secret

{B}

secret
{A, B}

secret
{}

R6

R1

R2 R3 R4 R5

R7 R8 R9

Page 6 of 6

Permission-to-role assignment (PA):

User-to-role assignment (UA):

The above two policies are equivalent: ____Yes, ____No

Because …
Access matrices for the above policies are almost the same. The difference is
underlined. U1 can append to O2 in the BLP policy but not in the RBAC one.

 permssn
 role

O1 O2 O3 O4

R1 read append
R2 append
R3 read
R4 read
R5 append
R6 append
R7
R8 append
R9

 user
 role

U1 U2 U3 U4

R1
R2
R3
R4
R5
R6 X
R7 X
R8 X
R9 X

 object
 user

O1 O2 O3 O4

U1 read, append append append append
U2 read read, append append ---
U3 read read read, append read
U4 read --- append read, append

