
Key Establishment and
Authentication Protocols

EECE 412

Protection
Authorization Accountability Availability

A
cc

es
s

C
on

tr
ol

D
at

a
Pr

ot
ec

tio
n

Audit

Non-
Repudiation

Se
rv

ic
e

C
on

tin
ui

ty

D
is

as
te

r
R

ec
ov

er
y

Assurance

R
eq

ui
re

m
en

ts
 A

ss
ur

an
ce

D
ev

el
op

m
en

t A
ss

ur
an

ce

O
pe

ra
tio

na
l A

ss
ur

an
ce

D
es

ig
n

A
ss

ur
an

ce

Authentication
Cryptography

where we are

“The security of a cryptosystem must not depend
on keeping secret the crypto-algorithm. The
security depends only on keeping secret the key”

Auguste Kerckhoff von Nieuwenhof
Dutch linguist

1883

session key with mutual
authentication using

symmetric key

Alice Bob

“I’m Alice”, RA

RB, E(“Bob”, RA, KAB)

E(“Alice”, RB, KS, KAB)

FPS session key with
mutual authentication
using symmetric key

Alice Bob

“I’m Alice”, RA

RB, E(“Bob”, RA, gb mod p, KAB)

E(“Alice”, RB, ga mod p, KAB)

1. Diffie-Hellman key exchange (Stamp 4.4,
Anderson 5.7.2.1, 5.7.2.2)

2. mutual authentication in networks (Stamp
9.1-9.3.3, Anderson Chapter 3)

3. perfect forward secrecy (Stamp 9.3.4, 9.3.5,
9.6, 9.7)

Outline

learning objectives for
this module

You should be able to

• analyze key establishment and authentication
protocols and identify their vulnerabilities

• improve or design new key establishment and
authentication protocols

• X → Y : { Z || W } kX,Y == E(Z, W, kX,Y)

• X sends Y the message produced by concatenating Z
and W enciphered by key kX,Y, which is shared by
users X and Y

• A → T : { Z } kA || { W } kA,T

• A sends T a message consisting of the concatenation
of Z enciphered using kA, A’s key, and W enciphered
using kA,T, the key shared by A and T

• r1, r2 nonces (“nonrepeating” random numbers)

Notation

Diffie-Hellman
Key Exchange

important trivia

• Invented by Williamson (GCHQ) and, independently,
by D and H (Stanford)

• A “key exchange” algorithm

• Used to establish a shared symmetric key

• Not for encrypting or signing

• Security rests on difficulty of discrete log problem:
given g, p, and gk mod p find k

how it works
• Let p be prime, let g be a generator

• For any x ∈ {1,2,…,p-1} there is n s.t. x = gn mod p

1. Alice selects secret value a
2. Bob selects secret value b
3. Alice sends ga mod p to Bob

4. Bob sends gb mod p to Alice

5. Both compute shared secret gab mod p

• e.g., Bob computes (ga)b mod p = gab mod p

why it’s hard to attack

• Suppose that Bob and Alice use gab mod p as a
symmetric key

• Trudy can see ga mod p and gb mod p

• Note ga gb mod p = ga+b mod p ≠ gab mod p

• If Trudy can find a or b, system is broken

• If Trudy can solve discrete log problem, then she
can find a or b

the protocol
• Public: g and p

• Secret: Alice’s exponent a, Bob’s exponent b

Alice, a Bob, b

ga mod p
gb mod p

• Alice computes (gb)a = gba = gab mod p
• Bob computes (ga)b = gab mod p
• Could use K = gab mod p as symmetric key

Man-in-the-Middle Attack

Alice, a Bob, b

ga mod p
gb mod p

Trudy, t

gt mod p
gt mod p

• Trudy shares secret gat mod p with Alice
• Trudy shares secret gbt mod p with Bob
• Alice and Bob don’t know Trudy exists!

how to prevent MiM attack?

• Encrypt DH exchange with symmetric key

• Encrypt DH exchange with public key

• Sign DH values with private key

• Other?

You MUST be aware of MiM attack on Diffie-Hellman

Authentication Protocols

basics
• Alice must prove her identity to Bob

• Alice and Bob can be humans or computers

• May also require Bob to prove he’s Bob (mutual
authentication)

• May also need to establish a session key

• May have other requirements, such as

• Use only public keys

• Use only symmetric keys

• Use only a hash function

• Anonymity, plausible deniability, etc., etc.

why authentication
can be hard?

• relatively simple on a stand-alone computer

• “Secure path” is the primary issue

• main concern is an attack on authentication software

• much more complex over a network

• attacker can passively observe messages

• attacker can replay messages

• active attacks may be possible (insert, delete, change
messages)

simple authentication

Alice Bob

“I’m Alice”

Prove it

My password is “frank”

• Simple and may be OK for standalone system

• But insecure for networked system

• Subject to a replay attack (next 2 slides)

• Bob must know Alice’s password

authentication attack

Alice Bob

“I’m Alice”

Prove it

My password is “frank”

Trudy

authentication Attack

Bob

“I’m Alice”

Prove it

My password is “frank”
Trudy

• This is a replay attack

• How can we prevent a replay?

Simple Authentication

Alice Bob

I’m Alice, My password is “frank”

• More efficient…

• But same problem as previous version

Better Authentication

Alice Bob

“I’m Alice”

Prove it

h(Alice’s password)

• Better since it hides Alice’s password

• From both Bob and attackers

• But still subject to replay

challenge-response

• To prevent replay, challenge-response used

• Suppose Bob wants to authenticate Alice

• Challenge sent from Bob to Alice

• Only Alice can provide the correct response

• Challenge chosen so that replay is not possible

• How to accomplish this?

• Password is something only Alice should know…

• For freshness, a “number used once” or nonce

simple challenge-response

Bob

“I’m Alice”

Nonce

h(Alice’s password, Nonce)

• Nonce is the challenge
• The hash is the response
• Nonce prevents replay, insures freshness
• Password is something Alice knows
• Note that Bob must know Alice’s password

Alice

general challenge-response

Bob

“I’m Alice”

Nonce

Something that could only be

Alice from Alice (and Bob can verify)

• What can we use to achieve this?

• Hashed pwd works, crypto might be better

symmetric key notation

• Encrypt plaintext P with key K

	

 	

 C = E(P,K)

• Decrypt ciphertext C with key K

	

 	

 P = D(C,K)

• Here, we are concerned with attacks on
protocols, not directly on the crypto

• We assume that crypto algorithm is secure

authentication with
symmetric key

• Alice and Bob share symmetric key KAB

• key KAB known only to Alice and Bob

• authenticate by proving knowledge of shared
symmetric key

• how to accomplish this?

• must not reveal key

• must not allow replay attack

authentication with
symmetric key

Alice, KAB
Bob, KAB

“I’m Alice”

E(R,KAB)

• Secure method for Bob to authenticate Alice

• Alice does not authenticate Bob

• Can we achieve mutual authentication?

R

mutual authentication?

Alice Bob

“I’m Alice”, R

E(R,KAB)

E(R,KAB)

• What’s wrong with this picture?

• “Alice” could be Trudy (or anybody else)!

Mutual Authentication

• Since we have a secure one-way
authentication protocol…

• The obvious thing to do is to use the
protocol twice

• Once for Bob to authenticate Alice

• Once for Alice to authenticate Bob

• This has to work…

Mutual Authentication

Alice Bob

“I’m Alice”, RA

RB, E(RA,KAB)

E(RB,KAB)

• This provides mutual authentication

• Is it secure?

attack on mutual authentication

Bob

1. “I’m Alice”, RA

2. RB, E(RA,KAB)

Trudy

Bob

3. “I’m Alice”, RB

4. RC, E(RB,KAB)

Trudy

5. E(RB,KAB)

Notes on Mutual Authentication

• Our one-way authentication protocol not
secure for mutual authentication

• Protocols are subtle!

• The “obvious” thing may not be secure

• Also, if assumptions or environment changes,
protocol may not work

• This is a common source of security failure

• For example, Internet protocols

mutual authentication
with symmetric key

Alice Bob

“I’m Alice”, RA

RB, E(“Bob”, RA, KAB)

E(“Alice”, RB, KAB)

• Do these “insignificant” changes help?

• Yes!

session key with mutual
authentication using

symmetric key

Alice Bob

“I’m Alice”, RA

RB, E(“Bob”, RA, KAB)

E(“Alice”, RB, KS, KAB)

Perfect Forward Secrecy

Perfect Forward Secrecy
• The concern…

• Alice encrypts message with shared key KAB and
sends ciphertext to Bob

• Trudy records ciphertext and later attacks Alice’s (or
Bob’s) computer to find KAB

• Then Trudy decrypts recorded messages

Perfect forward secrecy (PFS): Trudy cannot
later decrypt recorded ciphertext

• Even if Trudy gets key KAB or other secret(s)

• Is PFS possible?

Perfect Forward Secrecy

• For perfect forward secrecy, Alice and Bob
cannot use KAB to encrypt

• Instead they must use a session key KS and
forget it after it’s used

• Problem: How can Alice and Bob agree on
session key KS and insure PFS?

naïve session key protocol

• Trudy could also record E(KS,KAB)

• If Trudy gets KAB, she gets KS

Alice, KAB Bob, KAB

E(KS, KAB)

E(messages, KS)

perfect forward secrecy
• Can use Diffie-Hellman for PFS

• Recall Diffie-Hellman: public g and p

• But Diffie-Hellman is subject to MiM
• How to get PFS and prevent MiM?

Alice, a Bob, b

ga mod p

gb mod p

PFS session key via DH

• Session key KS = gab mod p

• Alice forgets a, Bob forgets b
Ephemeral Diffie-Hellman

• Not even Alice and Bob can later recover KS

• Other ways to do PFS?

Alice, a Bob, b

E(ga mod p, KAB)

E(gb mod p, KAB)

mutual authentication
with symmetric key

Alice Bob

“I’m Alice”, RA

RB, E(“Bob”, RA, KAB)

E(“Alice”, RB, KAB)

• Do these “insignificant” changes help?

• Yes!

Alice Bob

“I’m Alice”, RA

RB, E(“Bob”, RA, gb mod p, KAB)

E(“Alice”, RB, ga mod p, KAB)

FPS session key with
mutual authentication
using symmetric key

1. Diffie-Hellman key exchange (Stamp 4.4,
Anderson 5.7.2.1)

2. mutual authentication in networks (Stamp
9.1-9.3.3)

3. perfect forward secrecy (Stamp 9.3.4, 9.3.5)

Outline

learning objectives for
this module

You should be able to

• analyze key establishment and authentication
protocols and identify their vulnerabilities

• improve or design new key establishment and
authentication protocols

