

# Principles of Designing Secure Systems

**EECE 412** 

#### learning objectives

- recognize the principles
- explain which should (have been) be applied

#### What Do you Already Know?

- What principles of designing secure systems do you already know?
- What anti-principles do you know?
  - "security through obscurity"
  - m&m security



source: candyrific.com

#### **Principles**

- 1. Least Privilege
- 2. Fail-Safe Defaults
- 3. Economy of Mechanism
- 4. Complete Mediation
- 5. Open Design
- 6. Separation of Privilege
- 7. Least Common Mechanism
- 8. Psychological Acceptability
- 9. Defense in depth
- 10. Question assumptions

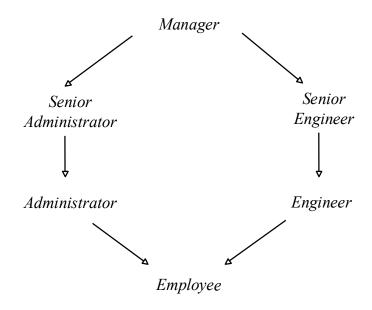
#### Overarching Goals

- Simplicity
  - Less to go wrong
  - Fewer possible inconsistencies
  - Easy to understand
- Restriction
  - Minimize access
    - "need to know" policy
  - Inhibit communication to minimize abuse of the channels

#### Principle 1: Least Privilege

Every program and every user of the system should operate using the least set of privileges necessary to complete the job

Rights added as needed, discarded after use


- Limits the possible damage
- Unintentional, unwanted, or improper uses of privilege are less likely to occur
- Guides design of protection domains

#### Example: Privileges in Operating Systems

- Until Windows NT, all privileges for everybody
- Separate admin (a.k.a., root) account on Windows and Unix
  - Ways to switch between accounts
- IIS account in Windows Server 2003

#### Example: role-based access control

Differentiation between assigned and activated roles



Friday, October 3, 2008

#### Example: IIS in Windows Server 2003

- before -- all privileges
- in Windows Server 2003 and later -- low-priveleged account

### Principle 2: Fail-Safe Defaults

Base access decisions on permission rather than exclusion.

suggested by E. Glaser in 1965

- Default action is to deny access
- If action fails, system as secure as when action began

#### Example: IIS in Windows Server 2003

crashes if attacked using buffer overflow

# Principle: Economy of Mechanism

Keep the design as simple and small as possible.

- KISS Principle
- Rationale?
  - Essential for analysis
  - Simpler means less can go wrong
    - And when errors occur, they are easier to understand and fix

# Example: Trusted Computing Base (TCB)

- temper-proof
- non-bypassable
- small enough to analyze it

# Principle 4: Complete Mediation

Every access to every object must be checked for authority.

If permissions change after, may get unauthorized access

#### Example: .rhosts mechanism abused by Internet Worm

Access to one account opened unchecked access to other accounts on different hosts

Friday, October 3, 2008

# Example: Multiple reads after one check

- Process rights checked at file opening
- No checks are done at each read/write operation
- Time-of-check to time-of-use

#### Kerckhoff's Principle

"The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key"

Auguste Kerckhoff von Nieuwenhof

Dutch linguist

1883

# Principle 5: Open Design

Security should not depend on secrecy of design or implementation

P. Baran, 1965

- no "security through obscurity"
- does not apply to information such as passwords or cryptographic keys

#### Example: Content Scrambling System

#### **DVD** content

- SecretEcrypt( $K_D, K_{DI}$ )
- ...
- SecretEcrypt( $K_D, K_{Dn}$ )
- Hash(K<sub>D</sub>)
- SecretEcrypt(K<sub>T</sub>,K<sub>D</sub>)
- SecretEcrypt(Movie,K<sub>T</sub>)

#### 1999

- Norwegian group derived SecretKey by using K<sub>Pi</sub>
- Plaintiff's lawyers included CSS source code in the filed declaration
- The declaration got out on the internet

#### Principle 6: Separation of Privilege

Require multiple conditions to grant privilege

R. Needham, 1973

Separation of duty

#### example: SoD constraints in RBAC

- static SoD
  - if a user is assigned role "system administrator" then the user cannot be assigned role "auditor"
- dynamic SoD
  - a user cannot activate two conflicting roles, only one at a time

## Principle 7: Least Common Mechanism

Mechanisms should not be shared

- Information can flow along shared channels in uncontrollable way
- Covert channels
- solutions using isolation
  - Virtual machines
  - Sandboxes

#### example: network security

- switches vs. repeaters
- security enclaves

Friday, October 3, 2008

# Principle 8: Psychological Acceptability

Security mechanisms should not add to difficulty of accessing resource

- Hide complexity introduced by security mechanisms
- Ease of installation, configuration, use
- Human factors critical here

### example: Switching between user accounts

- Windows NT -- pain in a neck
- Windows 2000/XP -- "Run as ..."
- Unix -- "su" or "sudo"

# Principle 9: Defense in Depth

Layer your defenses

## example: Windows Server 2003

| Potential problem                        | Mechanism                           | Practice                  |
|------------------------------------------|-------------------------------------|---------------------------|
| Buffer overflow                          | defensive<br>programming            | check<br>preconditions    |
| Even if it were vulnerable               | IIS 6.0 is <b>not</b> up by default | no extra<br>functionality |
| Even if IIS were running                 | default URL length 16<br>KB         | conservative limits       |
| Even if the buffer were large            | the process crashes                 | fail-safe                 |
| Even if the vulnerability were exploited | Low privileged account              | least privileged          |

Friday, October 3, 2008

#### Principle 10: Question Assumptions

Frequently re-examine all the assumptions about the threat agents, assets, and especially the environment of the system

# Example: Assumtpions, Assumptions, ...

- ident
- finger protocol

#### **Principles**

- 1. Least Privilege
- 2. Fail-Safe Defaults
- 3. Economy of Mechanism
- 4. Complete Mediation
- 5. Open Design
- 6. Separation of Privilege
- 7. Least Common Mechanism
- 8. Psychological Acceptability
- 9. Defense in depth
- 10. Question assumptions