
T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 	

Copyright © 2004-2007 Konstantin Beznosov

Developing Secure Software

2	

Vulnerability Report Statistics

3	

Outline

  Why developing secure software is hard?
  How are security bugs different?
  How does buffer overflow work?
  Guidelines for developing secure software

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 	

Copyright © 2004-2007 Konstantin Beznosov

Why are there so many
vulnerabilities in software?

5	

What makes simple mechanical systems predictable?
  Linearity (or, piecewise linearity)
  Continuity (or, piecewise continuity)
  Small, low-dimensional statespaces

Systems with these properties are
(1) easier to analyze, and (2) easier to test.

0

2

4

6

8

10

12

1 2

x

y

6	

  Computers enable highly complex systems
  Software is taking advantage of this

•  Highly non-linear behavior; large, high-dim. state spaces

7	

Other software properties make
security difficult

The Trinity of Trouble

  Connectivity
•  The Internet is everywhere and most software is on it

  Complexity
•  Networked, distributed, mobile, feature-full

  Extensibility
•  Systems evolve in unexpected ways and are changed on

the fly

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 	

Copyright © 2004-2007 Konstantin Beznosov

How Are Security Bugs
Different?

9	

Intended
functionality

Traditional
faults

Actual
software
functionality

Unintended,
undocumented
or unknown
functionality

Weak authn

Poor
Defenses

BO in authn

Extra
‘functionality’

No authn

Missing
Defenses

Intended vs. Implemented Behavior

10	

Traditional faults

  Incorrect
•  Supposed to do A but did B instead

  Missing
•  Supposed to do A and B but did only A.

11	

Security problems are complicated
Implementation Flaws

  Buffer overflow
•  String format

  Race conditions
•  TOCTOU (time of check to

time of use)

  Unsafe environment
variables

  Unsafe system calls
•  System()

  Untrusted input problems

Design Flaws
  Misuse of cryptography
  Compartmentalization

problems in design
  Privileged block protection

failure (DoPrivilege())
  Catastrophic security failure

(fragility)
  Type safety confusion error
  Insecure auditing
  Broken or illogical access

control
  Method over-riding

problems (subclass issues)
Which ones are more frequent?

12

How Buffer Overflow Works

Adopted from the material by
Dave Hollinger

13

The Problem
void foo(char *s) {
 char buf[10];
 strcpy(buf,s);
 printf(“buf is %s\n”,s);
}
…
foo(“thisstringistolongforfoo”);

14

Exploitation
•  The general idea is to give programs

(servers) very large strings that will overflow a
buffer.

•  For a server with sloppy code – it’s easy to
crash the server by overflowing a buffer.

•  It’s sometimes possible to actually make the
server do whatever you want (instead of
crashing).

15

Parameters
Return Address

Calling Frame Pointer
Local Variables

A Stack Frame

00000000

Addresses

SP

SP+offset

16

Sample
Stack

18
addressof(y=3) return address
saved stack pointer
y
x
buf

x=2;
foo(18);
y=3;

void foo(int j) {
 int x,y;
 char buf[100];
 x=j;
 …
}

17

Before and After
void foo(char *s) {

 char buf[100];
 strcpy(buf,s);
 …

address of s
return-address

saved sp

buf

address of s
pointer to pgm

Small Program

18

Building the
small program

•  Typically, the small program stuffed in
to the buffer does an exec().

•  Sometimes it changes the password db
or other files…

19

exec() example
#include <stdio.h>

char *args[] = {"/bin/ls", NULL};

void execls(void) {
 execv("/bin/ls",args);
 printf(“I’m not printed\n");
}

20

A Sample Program/String
Does an exec() of /bin/ls:

unsigned char cde[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0”
“\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
“\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/ls";

21

Sample Overflow Program
unsigned char cde[] = "\xeb\x1f\…

void tst(void) {
 int *ret;
 ret = (int *)&ret+2; // pointer arithmetic!
 (*ret) = (int) cde; //change ret address
}

int main(void) {
 printf("Running tst\n");
 tst();
 printf("foo returned\n");
}

22

Using NOPs

Real program
(exec /bin/ls or whatever)

new return address

nop instructions

23

Estimating the Location

Real program

new return address

nop instructions

new return address

new return address
new return address

new return address
new return address

24

vulnerable.c
void foo(char *s) {
 char name[200];
 strcpy(name,s);
 printf("Name is %s\n",name);
}
int main(void) {
 char buf[2000];
 read(0,buf,2000);
 foo(buf);
}

Properties of Control Flow Exploits

  Computation
•  The attacker wishes to perform

• Shellcode (machine code)

  Control flow
•  Disrupts regular control flow of the program
•  Commonly transfers control to the shellcode

25	

Techniques for Preventing Buffer
Overflow Attacks

  Write or Execute, but not both
•  No program segment loaded into memory is

both writable and executable

  Address Space Layout Randomization
(ASLR)
•  Prevents an attacker from predicting

information needed for correctly changing
information flow towards the desirable
computation

26	

27	

Pervasive C problems lead to bugs

  Calls to watch out for

  Hundreds of such calls
  Use static analysis to find these problems

•  ITS4, SourceScope

  Careful code review is necessary

Instead of: Use:
gets(buf) fgets(buf, size, stdin)

strcpy(dst, src) strncpy(dst, src, n)

strcat(dst, src) strncat(dst, src, n)

sprintf(buf, fmt, a1,…) snprintf(buf, fmt, a1, n1,…)
(where available)

*scanf(…) Your own parsing

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 	

Copyright © 2004-2007 Konstantin Beznosov

How to Develop 
Secure Software?

29	

Guidelines

1.  Reduce the number of all defects by order of
magnitude

2.  Build security in your development process
from beginning

3.  Practice principles of designing secure systems
4.  Know how systems can be compromised
5.  Develop and use guidelines and checklists
6.  Choose safer languages, VMs, OSs, etc.
7.  Provide tool support

30	

1. Produce Quality Software

  Use well structured effective processes
•  e.g., Capability Maturity Model (CMM), *-CMM

  Use precise requirements and specifications

31	

2. Build Security into 
Development Process

review,
validation	

risk analysis	

external
review	

static security
analysis	

Risk Analysis	

Penetration
Testing	

Adapted from
D. Verdon and G. McGraw, "Risk analysis in software design," IEEE Security & Privacy, vol. 2, no. 4, 2004, pp. 79-84.

Requirements
Definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
Maintenance

arch. styles,	

design ���

principles	

security tests,	

test depth
analysis,
validation	

security
requirements	

(guidelines,

analysis, review)	

languages,	

tools,	

standards,	

change
tracking	

…	

32	

Follow Best Practices
  These best practices

should be applied
throughout the lifecycle

  Tendency is to “start at the
end” (penetration testing)
and declare victory
•  Not cost effective
•  Hard to fix problems

  Start as early as possible

  Abuse cases
  Security requirements

analysis
  Architectural risk analysis
  Risk analysis at design
  External review
  Test planning based on risks
  Security testing (malicious

tests)
  Code review with static

analysis tools

33	

3. Practice principles of 
designing secure systems

Principles of Designing Secure Systems
1.  Least Privilege
2.  Fail-Safe Defaults
3.  Economy of Mechanism
4.  Complete Mediation
5.  Open Design
6.  Separation of Privilege
7.  Least Common Mechanism
8.  Psychological Acceptability
9.  Defense in depth
10. Question assumptions

34	

4. Know How Systems Can Be Compromised
1.  Make the Client Invisible
2.  Target Programs That Write to Privileged OS

Resources
3.  Use a User-Supplied Configuration File to Run

Commands That Elevate Privilege
4.  Make Use of Configuration File Search Paths
5.  Direct Access to Executable Files
6.  Embedding Scripts within Scripts
7.  Leverage Executable Code in Nonexecutable

Files
8.  Argument Injection
9.  Command Delimiters
10.  Multiple Parsers and Double Escapes
11.  User-Supplied Variable Passed to File System

Calls
12.  Postfix NULL Terminator
13.  Postfix, Null Terminate, and Backslash
14.  Relative Path Traversal
15.  Client-Controlled Environment Variables
16.  User-Supplied Global Variables (DEBUG=1,

PHP Globals, and So Forth)
17.  Session ID, Resource ID, and Blind Trust
18.  Analog In-Band Switching Signals (aka “Blue

Boxing”)
19.  Attack Pattern Fragment: Manipulating

Terminal Devices
20.  Simple Script Injection
21.  Embedding Script in Nonscript Elements
22.  XSS in HTTP Headers
23.  HTTP Query Strings

24.  User-Controlled Filename
25.  Passing Local Filenames to Functions That

Expect a URL
26.  Meta-characters in E-mail Header
27.  File System Function Injection, Content Based
28.  Client-side Injection, Buffer Overflow
29.  Cause Web Server Misclassification
30.  Alternate Encoding the Leading Ghost

Characters
31.  Using Slashes in Alternate Encoding
32.  Using Escaped Slashes in Alternate Encoding
33.  Unicode Encoding
34.  UTF-8 Encoding
35.  URL Encoding
36.  Alternative IP Addresses
37.  Slashes and URL Encoding Combined
38.  Web Logs
39.  Overflow Binary Resource File
40.  Overflow Variables and Tags
41.  Overflow Symbolic Links
42.  MIME Conversion
43.  HTTP Cookies
44.  Filter Failure through Buffer Overflow
45.  Buffer Overflow with Environment Variables
46.  Buffer Overflow in an API Call
47.  Buffer Overflow in Local Command-Line

Utilities
48.  Parameter Expansion
49.  String Format Overflow in syslog()

35	

5. Develop Guidelines and Checklists
Example from Open Web Application Security Project (www.owasp.org):
  Validate Input and Output
  Fail Securely (Closed)
  Keep it Simple
  Use and Reuse Trusted Components
  Defense in Depth
  Security By Obscurity Won't Work
  Least Privilege: provide only the privileges absolutely required
  Compartmentalization (Separation of Privileges)
  No homegrown encryption algorithms
  Encryption of all communication must be possible
  No transmission of passwords in plain text
  Secure default configuration
  Secure delivery
  No back doors

36	

6. Choose Safer Languages, VMs,
OSs, etc.

  C or C++?
  Java or C++?
  Managed C++ or vanilla C++?
  .NET CLR or JVM?
  Windows XP or Windows 2003?
  Linux/MacOS/Solaris or Windows?

37	

7. Make Developers’ Life Easier:  
Give Them Good Tools

  automated tools for formal methods
•  http://www.comlab.ox.ac.uk/archive/formal-methods.html

  code analysis tools
•  RATS http://www.securesw.com/rats
•  Flawfinder http://www.dwheeler.com/flawfinder
•  ITS4 http://www.cigital.com/its4
•  ESC/Java

http://www.niii.kun.nl/ita/sos/projects/escframe.html
•  PREfast, PREfix, SLAM www.research.microsoft.com
•  Fluid http://www.fluid.cmu.edu
•  JACKPOT research.sun.com/projects/jackpot
•  Many more …

Relevant Books

and many more …

39	

module summary
  developing secure software is hard because

it’s
•  nonlinear, large, extensible, complex, has side-

effects, networked

  security bugs are different because they are
undocumented side-effects

  buffer overflow works through overriding
return address and replacing data with code

  guidelines for developing secure software

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 	

Case Study:  
Build Security In Maturity Model

40	

BSIMM

  Framework derived from SAMM Beta
  Based on collected data from 9 large

firms

42	

Source: “Building Security In Maturity Model” by Gary McGraw, Brian Chess, Sammy Migues	

