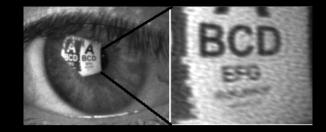


THE UNIVERSITY OF BRITISH COLUMBIA


Introduction into Computer Security

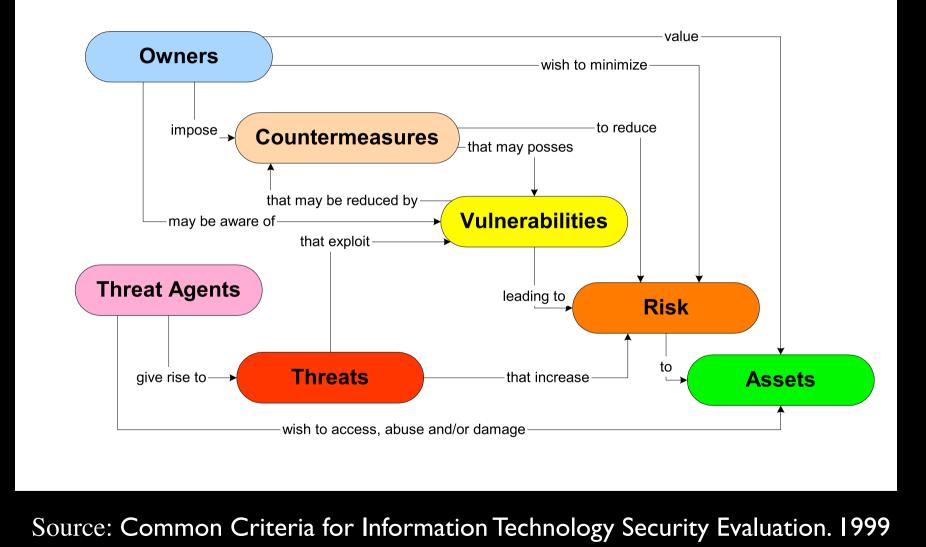
what is "computer security"?

- security -- "safety, or freedom from worry"
- thesaurus: peace of mind, feeling of safety, stability, certainty, happiness, confidence.
 - where does it come from?
- how can it be achieved?
 - make computers too heavy to steal
 - buy insurance
 - create redundancy (disaster recovery services)

example

- able to read read
 36pt font from a distance of 10 meters
- equipment cost \$12K

source: "Tempest in a Teapot: Compromising Reflections Revisited" by Michael Backes, Tongbo Chen, Markus Duermuth, Hendrik P.A. Lensch, Martin Welk, in 2009 IEEE Symposium on Security and Privacy


what can be done about risk?

• avoid

• transfer

• reduce

• accept

example: corner store

analyze and suggest

- I. assets at risk and their value
- 2. threats to these assets
- 3. threat agents
- 4. risk management

classes of threats

disclosure

• snooping

deception

- modification
- spoofing
- repudiation of origin
- denial of receipt

disruption

- modification
- denial of service

usurpation

- modification
- spoofing
- delay
- denial of service

goals of computer security

• deterrence

• Deter attacks

• prevention

• Prevent attackers from violating security policy

detection

• Detect attackers' violation of security policy


recovery

- Stop attack, assess and repair damage
- Continue to function correctly even if attack succeeds

• investigation

- Find out how the attack was executed: forensics
- Decide what to change in the future to minimize the risk

Solovki Monastery, White Sea, Russia

Monday, September 3, 2012

Castle of Chillon

from www.picture-newsletter.com/chillon/

Monday, September 3, 2012

conventional fortress-based security

Goal: Prevent people from violating system's security policy

Means:

Fortification

- provides safety
- involves layering
- expensive
- requires maintenance
- eventually compromised

Some points about fortresses

- no absolute safety
- one weakness/error sufficient
- extra layers at extra cost
- important to understand threats
- limited defender's resources
- adjust to attacks
- resource suppliers
- distinguishing noncombatants from attackers
- containment

limitations of the fortress analogy

fortress

- against external attackers
- protects only insiders
- defences cannot change

computer security

control of insiders

- has to keep system usable
- has to protect from new types of attacks

what computer security policies are concerned with?

• Confidentiality

keeping data and resources hidden

Integrity

- data integrity (integrity)
- origin integrity (authentication)

• Availability

enabling access to data and resources

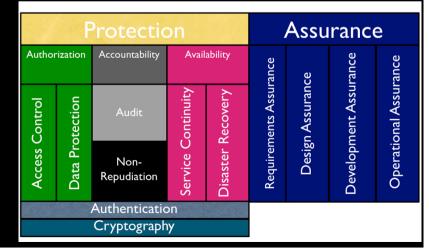
CIA

conventional approach to computer security

Protection				Assurance			
Authorization	Accountability	Availability		ance.	ce	rance	ance
Control otection	Audit	ontinuity	Recovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance
Access Control Data Protection	Non- Repudiation	Service Continuity	Disaster	Requirem	Desig	Developr	Operati
Authentication							
Cryptography							

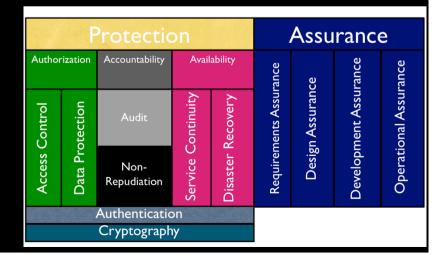
Protection

provided by a set of mechanisms (countermeasures) to prevent bad things


(threats) from happening

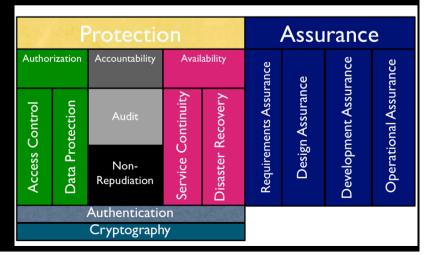
Protection					Assurance			
Author	thorization Accountability Availability		ance	e	ance	ance		
Access Control	otection	Audit	ontinuity	kecovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance
	Data Protection	Audit Non- Repudiation S	Disaster Recovery	Requirem	Design	Developn	Operatio	
Authentication Cryptography								

Authorization protection against breaking rules

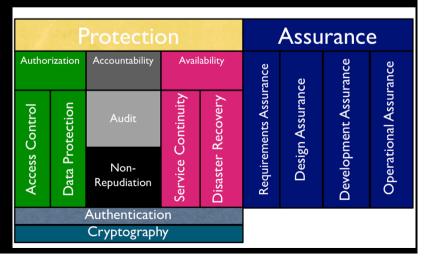

Rule examples:

- Only registered students should be able to take exam or fill out surveys
- Only the bank account owner can debit an account
- Only hospital's medical personnel should have access to the patient's medical records
- Your example...

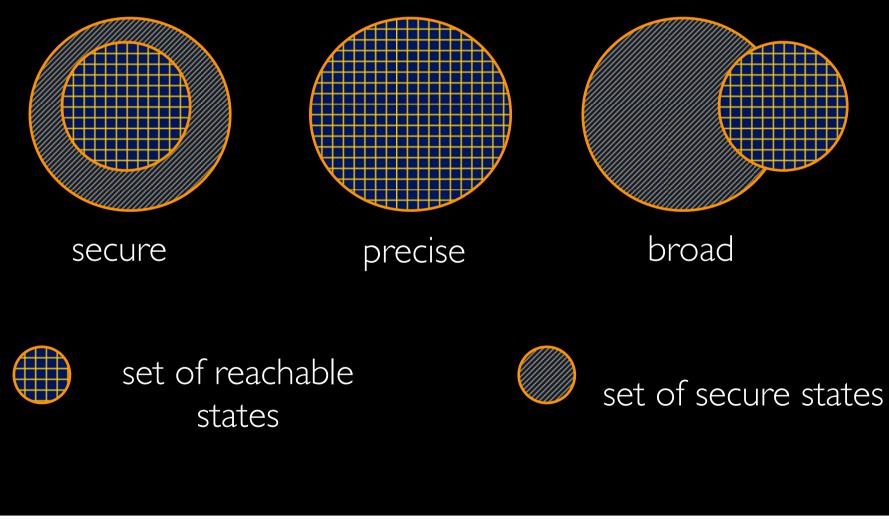
Authorization Mechanisms: Data Protection


- No way to check the rules
 - e.g. telephone wire or wireless networks
- No trust to enforce the rules
 - e.g. MS-DOS

Accountability

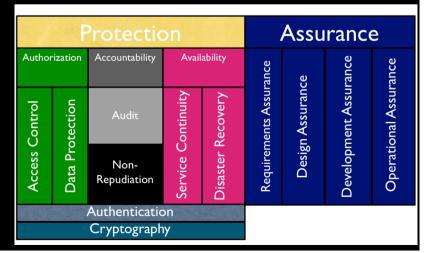

You can tell who did what when

- (security) audit -- actions are recorded in audit log
- Non-repudiation -- evidence of actions is generated and stored



Availability

- Service continuity -- you can always get to your resources
- Disaster recovery -- you can always get back to your work after the interruption


types of mechanisms

Assurance

Set of things the system builder and the operator of the system do to convince you that it is really safe to use.

- the system can enforce the policy you are interested in, and
- the system works as intended

securing systems

steps of improving security

- 1. analyze risks
 - asset values
 - threat degrees
 - vulnerabilities
- 2. develop/change policies
- 3. choose & develop countermeasures
- 4. assure
- 5. go back to the beginning

in the following scenario, analyze

- I. Assets at risk and their value
- 2. Threats to these assets
- 3. Threat agents
- 4. Ways to manage risk

Key Points

Protection				Assurance				
Author	ization	Accountability	countability Availability		ance	се	rance	ance
Access Control Data Protection	Audit	Continuity	Secovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance	
Access Control	Data Pro	Non- Repudiation	Service C	Disaster Recovery	Requiren	Desig	Developn	Operati
Authentication								
Cryptography								

key points (cont-ed)

- secure, precise, and broad mechanisms
- Risk = Asset × Vulnerability × Threat
- steps of improving security
- classes of threats
 - disclosure
 - deception
 - disruption
 - usurpation