
Laboratory for Education and Research in
Secure Systems Engineering (LERSSE)

Networked Systems Laboratory (NetSysLab)

Department of Electrical & Computer Engineering

The Socialbot Network
When Bots Socialize for Fame and Money

Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, Matei Ripeanu

Outline

2

Problem
Motivation

Socialbot Network

Implications Evaluation

3

Problem
Motivation

Reaching Out Millions

4 Jose Vargas, Voices on The Washington Post, November, 2008

Obama Raised Half a Billion Online

Mobilizing The Masses

5

Photo credit: Peter Macdiarmid, Getty Images Photo credit: Steve Crisp, Reuters

The Arab Spring, January 2011 - Now

Rise of the Socialbots

6

+

Automation
software

Social media
account

Socialbot

The Web Ecology Project Zack Coburn and Greg Marra, Olin College

Misusing Socialbots on a Large Scale?

7

Infiltration Misinformation Data collection

A scalable infrastructure for:

Contributions

• Demonstrated the feasibility of large-
scale infiltration by a group of
orchestrated socialbots

• Characterized users’ behavior in
response to such infiltration

• Investigated the corresponding
privacy and security implications

8

9

Socialbot Network

Concept

10

Botmaster

C&C Channel

Socialbots

Online Social Network

Botherder
Socialbot

Infiltrated user (randomly picked)

Infiltrated user (with mutual friends)

11

Evaluation

Methodology

• Prototype on Facebook

• 102 socialbots, single botmaster

• Operated for 8 weeks

• Single machine

• Different IPs

• HTTP proxy emulating different
browsers and OSs

• Approved by UBC ethics board

12

Prototype Architecture

13

Commands,
Botcargo

G
ra

p
h
 A

P
I

+
 H

T
T
P

Facebook Servers

b1

bi

Socialbot

API Wrapper

HTTP Scraper

Native
Controller

bi
Botmaster

Botupdater

C&C Engine

Master
Controller

0000000000
00000

3rd Party
Websites & APIs

Blurbs,
Tokens

bi

Our Machine

HTTP

14

Socialbot

Infiltrated user (randomly picked)

Infiltrated user (with mutual friends)

Contacted user

17

19

Most Users Decide Within Three Days

20

86%

58%

Too Many Friends: Too Many Bots?

21

-10

0

10

20

30

40

50

60

A
cc

ep
ta

cn
e

ra
te

 (
%

)

Number of friends

95% conf.

-10

0

10

20

30

40

50

60

A
cc

ep
ta

n
ce

 r
at

e
(%

)

Number of friends

95% conf.

0

5

10

15

20

25

30

35

40

45

A
cc

ep
ta

n
ce

 r
at

e
(%

)

Number of friends

m-socialbots

f-socialbots

f-socialbots m-socialbots

22

The End Result (15 Socialbots)

8,570 request sent 3,055 accepted

20% Blocked

Mutual Friends Matter

24

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 ≥11

A
cc

ep
ta

n
ce

 r
at

e
(%

)

Number of mutual friends

95% conf.

Bootstrapping

Infiltration is Mostly a Team Work

25

88 bots infiltrated 10-40 profiles

10 bots infiltrated
60-80 profiles

70% 23%

27

Implications

Infiltration Resulted in Privacy Breaches

28

0
5

10
15
20
25
30
35
40
45
50

IM Account

Identifier

Email

Address

Postal

Address

Phone

Number

Thousands

Before

After

Birth dates: 48,810 before 580,649 after (11.9x more)

Capability of “Social Adversaries”

29

Honest region

Sybil region

Attack edges

Sybil detection via
social networks

With adversary running
large-scale infiltration

Eroding the Trust in the Web

30

Facebook Applications

Facebook Connect

Summary

• Large-scale infiltration is feasible and
has serious privacy and security
implications

• Socialbots make it difficult for OSN
security defenses and their users to
detect their true nature

• There is a need for more effective,
socio-technical defenses that are less
vulnerable to both human and technical
exploits

31

33

Yazan

Boshmaf

Ildar
Muslukhov

Konstantin
Beznosov

Matei
Ripeanu

34

Interactions

One Socialbot’s Profile

35

The Socialbot Network

36

37

38

Messages Received

39

40

41

42

43

Posts by the Socialbots

44

46

47

Posts by the Socialbots’ Friends

48

49

50

51

52

53

Backup

54

OSN Security:
Adversarial Machine Learning

Facebook Immune System

Tao Stein

Facebook

stein@fb.com

Erdong Chen

Facebook

rogerc@fb.com

Karan Mangla

Facebook

kmangla@fb.com

Abstract

Popular Internet sites are under attack all the time from phishers,
fraudsters, and spammers. They aim to steal user information and
expose users to unwanted spam. The attackers have vast resources
at their disposal. They arewell-funded, with full-time skilled labor,
control over compromised and infected accounts, and access to
global botnets. Protecting our users is a challenging adversarial
learning problem with extreme scale and load requirements. Over
the past several years we have built and deployed a coherent,
scalable, and extensible realtime system to protect our users and
the social graph. This Immune System performs realtime checks
and classifications on every read and write action. As of March
2011, this is25B checksper day, reaching 650K per second at peak.
The system also generates signals for use as feedback in classifiers
and other components. We believe this system has contributed to
making Facebook the safest place on the Internet for people and
their information. This paper outlines the design of the Facebook
Immune System, the challenges we have faced and overcome, and
the challenges we continue to face.

Keywords Machine Learning, Adversarial Learning, Security,
Social Network Security

1. Introduction

TheFacebook social graph compriseshundreds of millionsof users
and their relationships with each other and with objects such as
events, pages, places, and apps. The graph is an attractive target
for attackers. Attackers target it to gain access to information or to
influenceactions. They can attack the graph in two ways: either by
compromising existing graph nodes or by injecting new fakenodes
and relationships. Protecting the graph is a challenging problem
with both algorithmic and systems components.

Algorithmically, protecting the graph is an adversarial learning
problem. Adversarial learning differs from more traditional learn-
ing in one important way: the attacker creating thepattern does not
want thepattern to be learned. For many learning problems thepat-
tern creator wants better learning and the interests of the learner
and thepattern creator arealigned and thepattern creator may even
be oblivious to the efforts of the learner. For example, the receiver
of ranked search results wants better search ranking and may be
oblivious to the efforts being done to improve ranking. The pattern
creator will not actively work to subvert the learning and may even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys Social Network Systems (SNS) 2011 April 10, 2011, Salzburg
Copyright c 2011 ACM Jan 1, 2011. . .$10.00

voluntarily give hints to aid learning. In adversarial learning, the
attacker works to hide patterns and subvert detection. To be effec-
tive, the system must respond fast and target the features that are
most expensive for the attacker to change, being careful also not to
overfit on the superficial features that are easy for the attacker to
change.

Attacker

Detects

Defender

Responds

Begin

Attack

Initial

Detection

Attacker Controls

Defender Controls

Attack Detect

Defense Mutate

Figure 1. The adversar ial cycle.
This diagram shows the adversarial cycle. The attacker controls the upper

phasesand thedefender controls thebottom phases. In both Attack and De-

tect phases theattacker isonly limited by its own resourcesand global rate-

limits. During Attack, the attack has not yet been detected and is largely

unfettered. During Detect, the attack has been detected but the system is

forming a coherent response. This includes the time to train a model or ex-

pand theset of bad attack vectorsand upload thepatterns to onlineclassifier

services. The response can form continuously with some models being de-

ployed earlier than others. During Defense, theattack hasbeen rendered in-

effective. The attacker may eventually detect this and begin Mutate to work

around the defense mechanism. This cycle can repeat indefinitely. The de-

fender seeks to shorten Attack and Detect while lengthening Defense and

Mutate. Theattacker seeks theopposite, to shorten thebottom phaseswhile

lengthening Attack and Detect. This cycle illustrates why detection and re-

sponse latencies are so important for effective defense.

Adversarial learning is a cyclical process shown in Figure 1.
An example will make the process more concrete. Several years
ago phishers would attack the graph using spammy messages with
predictable subject lines. The messages included links to phishing
sites. They sent out these messages repeatedly from compromised
accounts to hundreds of friends of the compromised accounts. The
predictable text patterns and volume made these straightforward to
detect and filter. To overcomethisfiltering, attackersobfuscated by
inserting punctuation, HTML tags, and images into their messages.
Aswell, theattackersvaried their distribution channels to evadede-
tection. The system responded to this by using mark as spam feed-

55 Stein et al., The Facebook Immune System, EuroSys – SNS, 2011

OSN Vulnerabilities:

Ineffective CAPTCHAs

56

CAPTCHA-solving businesses*

* Dancho Danchev, Inside India’s CAPTCHA solving business, 2008

Koobface

OSN Vulnerabilities:

Fake User Accounts and Profiles

57

OSN Vulnerabilities:

Large-Scale Network Crawls

58

OSN Vulnerabilities:

Exploitable Platforms and APIs

59

Web-based Botnet Integration

60

OSN

Channel

Socialbots

Online Social Network

Botmaster
Botherder

Infected Machines

Botnet + Socialbot Network

C&C Channel

Operations & Commands

Table 1: T he gener ic oper at ions suppor t ed by a socialbot in any given OSN .

Oper at ion T ype D escr ipt ion

r ead(o, p) Social-interact ion Reads an object o from profile p and returns its value v as botcargo

wr i t e(v, o, p) Social-interact ion Writes value v to object o on profile p

connect (b, p) Social-st ructure Sends or accepts a connect ion request sent from profile b to profile p

di sconnect (b, p) Social-st ructure Breaks the social connect ion between profiles b and p

Botmaster

C&C Channel

Socialbots

Online Social Network Botherder

F igur e 1: A Socialbot N et wor k . Each node in t he
OSN r epr esent s a pr ofi le. T he socialbot s ar e m ar ked

in black . I nfi l t r at ed pr ofi les ar e m ar ked in gr ay.
Edges bet ween nodes r epr esent social connect ions.

T he dashed ar r ow r epr esent a connect ion r equest .
T he sm al l ar r ows r epr esent social int er act ions.

channel that facilitates the t ransfer of both the botcargo and

the commands between the socialbots and the botmaster,
including any heartbeat signals. Figure 1 showsa conceptual

model of an SbN.

3.2 Objectives
The botherder is a person or an organizat ion that builds

and operates an SbN for two main object ives: (1) to carry

out a large-scale infilt rat ion campaign in the targeted OSN,
and (2) to harvest private users’ data. The first object ive

involves connect ing to a large number of either random or
targeted OSN users for the purpose of establishing an influ-

ent ial posit ion or fame. The second object ive, on the other
hand, aims to generate profit by collect ing personal users’

data that have monetary value. Not ice that this data can
be then used to craft personalized messages for subsequent

spam, phishing, or ast roturf campaigns.

3.3 Design Goals
Ideally, an SbN has to be fully automated and scalable

enough to cont rol hundreds of socialbots. This isachieved by
adopt ing a t radit ional web-based botnet design. In order to

be e↵ect ive, however, an SbN has to meet three challenging
goals: (1) each socialbot has to be designed in such a way

that hides its t rue face; a robot , (2) the botmaster has to
implement heurist ics that enable large-scale infilt rat ion in

the targeted OSN, and (3) the t raffic in the C&C channel
has to look benign in order to avoid detect ing the botmaster.

In this paper, wedecided to usea simplist ic design in order
to meet each one of these goals. We used techniques that
have shown to be both feasible and e↵ect ive. We discuss the

details of these techniques in the following sect ion.

3.4 Construction
We now discuss how a botherder can const ruct an SbN

that performs well in pract ice while meet ing the design goals
out lined in the previous sect ion.

3.4.1 TheSocialbots

A socialbot consists of two main components: a profile on

a targeted OSN (the face), and the socialbot software (the
brain). We enumerate the socialbots with the profiles they

cont rol, that is, for a set B = { b1 , . . . , bn } of n socialbots,
we use bi 2 B to refer to both the i -th socialbot and the

profile it cont rols. But how should the socialbot software be
programmed in order to mimic real users?

First , we require the socialbot to support two types of

generic operat ions in any given OSN: social-interact ion op-
erat ions that are used to read and write social content , and

social-st ructure operat ions that are used to alter the social
graph. A descript ion of these operat ions is shown in Table 1.

Second, we define a set of commands that each includes
a sequence of generic operat ions. Each command is used

to mimic a real user act ion that relates to social content
generat ion (e.g., a status update) or social networking (e.g.,

joining a community of users). Commands can be either
defined locally on each socialbots (called native commands),

or sent by the botmaster through the C&C channel (called
master commands). For example, we define a nat ive com-

mand called st at us_updat e as follows: at arbit rary t imes,
a socialbot bi 2 B generates a message m (e.g., a random

blurb crawled from the Web), and executes the operat ion
wr i t e(m, o, bi) where o is the object that maintains mes-

sages on profile bi (e.g., the profile’s “wall” in Facebook).
Finally, each socialbot employs a native control ler : a sim-

ple two-state Finite-State Machine (FSM) that enables the
socialbot to either socialize by execut ing commands, or stay

dormant .

3.4.2 TheBotmaster

A botmaster is a botherder-cont rolled automat ion soft -

ware that orchest rates the overall operat ion of an SbN. The
botmaster consists of three main components: a botworker,

a botupdater, and a C&C engine. The botworker builds and
maintains socialbots. Building a new socialbot involves first

creat ing a new socially at t ract ive profile in the targeted OSN
as discussed in Sect ion 2.3.2. After that , the profile’s creden-

t ials (i.e., the user name and password) are delegated to the
socialbot software so as to get a full cont rol over this profile.

The botupdater pushes new software updates, such as a new
list of nat ive commands, to the socialbots through the C&C

channel. Finally, the C&C engine maintains a repository of
master commands and runs a master control ler : a many-

state FSM that is the core cont rol component of the SbN.
The botherder interacts with the C&C engine to define a set
of master commands, which are dispatched when needed by

the master cont roller and then sent to the socialbots. An
interest ing quest ion now follows: what kinds of master com-

mands are required to achieve a large-scale infilt rat ion in the
targeted OSN?

First , not ice that at the beginning each socialbot is iso-
lated from the rest of the OSN, that is, |Γ(bi)| = 0 for each

Table 2: M ast er com m ands. T he socialbot bi 2 B is t he socialbot execut ing t he com m and, |B| = n.

Com m and D escr ipt ion

cl ust er Connects bi to at most Navg other socialbots in B

r and_connect (k) Connects bi to k non-boherder-owned profiles that are picked at random from the OSN

decl ust er Disconnects bi from every socialbot bj 2 S where S = { bj | bj 2 Γ(bi) \ B and |Γ(bj)| > n}

cr awl _ext nei ghbor hood Returns ∆ (bi), the extended neighborhood of bi , as botcargo

mut ual _connect Connects bi to every profile pj 2 ∆ (bi) − B.

har vest _dat a Reads all accessible informat ion of every profile pj 2 Γ(bi), and returns it as botcargo

bi 2 B, which is not a favorable st ructure to start a large-
scale infilt rat ion. Tong et al. [39] show that the social at -

t ract iveness of a profile in an OSN is highly correlated to its
neighborhood size, where the highest at t ract iveness is ob-

served when the neighborhood size is close to the network’s
average. Usually, Navg is known or can be est imated (e.g.,
Navg = 130 on Facebook [3]). Thus, in order to increase the

social at t ract iveness of a socialbot , the adversary defines a
master command cl ust er , which orders each socialbot to

connect to at most Navg other socialbots.
Second, it has been widely observed that if two users have

a mutual connect ion in common, then there is an increased
likelihood that they become connected themselves in the fu-

ture [22]. This property is known as the tr iadic closure prin-
ciple, which originates from real-life social networks [32].

Nagle et al. [29] show that the likelihood of accept ing a
connect ion request in an OSN is about three t imes higher

given the existence of some number of mutual connect ions.
Therefore, in order to improve the potent ial infilt rat ion in

the targeted OSN, the adversary defines a master command
mut ual _connect , which orders each socialbot to connect to

user profiles with whom it has mutual connect ions.
Finally, we design the master cont roller to switch between

three master states or phases: setup, bootst rapping, and
propagat ion. In the setup phase, the botmaster builds n so-

cialbots, updates their software, and then issues the cl ust er
command. After that , in the bootstrapping phase, the bot -

master issues the command r and_connect (k) , which orders
each socialbot to connect to k profiles that are picked at
random from the targeted OSN. When every socialbot is

connected to k non-botherder-owned profiles, the botmaster
issues the command decl ust er , which orders the socialbots

to break the social connect ions between them, and hence,
dest roying any n-clique st ructure that could have been cre-

ated in the earlier step. In the propagation phase, the bot -
master issues the command cr awl _ext nei ghbor hood, which

orders the socialbots to crawl their extended neighborhoods,
after which the botmaster uses this informat ion and issues

the command mut ual _connect . Whenever a socialbot in-
filt rates a user profile, the botmaster issues the command

har vest _dat a, which orders the socialbot to collect all ac-
cessible users’ profile informat ion in it s neighborhood. A

descript ion of all master commands is shown in Table 2.

3.4.3 TheC&C Channel

The communicat ion model of an SbN consists of two chan-
nels: the C&C channel and the socialbot -OSN channel. The
socialbot -OSN channel carries only OSN-specific API calls

and normal HTTP t raffic, which are the end product of ex-
ecut ing a command by a socialbot . From the OSN side, this

t raffic originates from either an HTTP proxy in case of high
act ivity, or from a normal user. It is therefore quite diffi-

CMDs

Botcargo

G
ra

p
h

 A
P

I
+

 H
T

T
P

Facebook Servers

b1

bi

Socialbot

API Wrapper

HTTP Scraper

Native

Controller

bi
Botmaster

Botbuilder

Botupdater

C&C Engine

Master

Controller

3rd Party

Websites & APIs

bi

Our Machines

HTTP

F igur e 2: T he Facebook Socialbot N et wor k .

cult to ident ify a socialbot solely based on the t raffic in the
socialbot -OSN channel.

As for the C&C channel, how should it be built so that it
is part icularly hard to ident ify the botmaster? To start with,

we argue that detect ing the botmaster from the C&C traffic
is as hard as it is in a t radit ional botnet ; the botherder

can rely on the exist ing botnet infrast ructure and deploy
the SbN as part of the botnet . Alternat ively, the botherder
can employ advanced techniques that , for example, establish

a probabilist ically unobservable communicat ion channel by
building a covert OSN botnet [28].

4. EVALUATION
In order to evaluate how vulnerable OSNs are to a large-

scale infilt rat ion by an SbN, we decided to build one accord-
ing to the discussion in Sect ion 3.4. We chose Facebook as

a targeted OSN because we believe it is part icularly difficult
to operate an SbN in Facebook for the following reasons:

(1) unlike other OSNs, Facebook is most ly used to connect
to o✏ine friends and family but not to st rangers [13], and

(2) Facebook employs the Facebook Immune System (FIS):
an adversarial learning system which represents a potent ial

nemesis of any SbN [36].

4.1 Ethics Consideration
Given the nature of an SbN, a legit imate quest ion follows:

is it ethically acceptable and just ifiable to conduct such a
research experiment? We believe that minimal-risk realist ic

experiments are the only way to reliably est imate the fea-
sibility of an at tack in real-world. These experiments allow
us, and the wider research community, to get a genuine in-

sight into the ecosystem of online at tacks, which are useful
in understanding how similar at tacks may behave and how

to defend against them. This seems to be the opinion of
other researchers who share our belief [6, 20].

61

