CPEN 442, Fall 2015

Quiz \#3

Your Family name: \qquad
Your Given name: \qquad
Your student ID: \qquad
Your CPEN 442 alias: \qquad

$\#$	Points	Out of
1		$9+5$ B
2		9
3		4
4		6
4		14
TOTAL		$42+5 B$

Notes:

- This assignment is marked out of 45 points. There are 5 bonus points, which can be used to makeup for misses in any other question.
- Make sure your handwriting is legible. If the teaching staff does not understand what your wrote, they mark your answer as if the unreadable text is missing.
- Aim to be precise and to the point. The experience of teaching this course since 2004 suggests that excessively long answers tend to correlate with lower marks.
- As in real world, stated questions and/or accompanied descriptions in this quiz are often open-ended and one has to make assumptions in order to answer them. If you do make assumptions, state them clearly and explicitly.
- Don't panic if you feel like you are severely short on time. Everybody is.

1. (9 point +5 bonus points) Analyze the following mode of operation and state (a) security properties it achieves, (b) pros, and (c) cons of this mode (3 points for each a, b and c subparts).

Terms:

P1,P2,...,Pn - Plaintext blocks, C1,C2,...,Cn - ciphertext
\boldsymbol{K} - encryption key and $\boldsymbol{E}(\boldsymbol{K})$ - Encrypt with K
CNT - a counter
MAC - Message Authentication Code
AUTHD - Data that needs to be authenticated
MULTH - Multiplication of input with current internal value. Treat this as a hash function.
Len(AUTHD) - length of AUTHD, and Len(C) - length of ciphertext

a) (3 points)
b) (3 points)
c) (3 points)

BONUS d) (5 points) Name the mode:
2. (9 points) Design a communication protocol between Alice and Bob who share Shared Key (SK), so that the following properties are achieved: (a) Perfect Forward Secrecy, (b) Replay attack resistance, and (c) mitigate Man-In-The-Middle attack. (Each of the points is worth 3 points).
3. (4 points) What data signing with a private key achieves that cannot be achieved with MAC?
4. (6 points) List the three authentication factors and provide a real-life example for each.
5. The handout contains a reproduction of the iOS security features.
a. (7 points) For each principle for designing secure systems, put a checkmark in the following table for those aspects of iOS that enable or follow this principle.

Attention: The total number of points for this question will be determine using the following formula: $R-W$, where R is the number of right checkmarks and W is the number of wrong checkmarks.

	$\begin{aligned} & \text { 哥 } \\ & \text { U } \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { A } \\ & \text { J } \\ & 0 \\ & 0 \end{aligned}$	O 0 0 0 0. 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
Least Privilege								
Fail-Safe Defaults								
Economy of Mechanism								
Complete Mediation								
Open Design								
Separation of Privilege								
Least Common Mechanism								
Psychological Acceptability								
Defense in depth								
Question assumptions								

(7 points) Write justification for the checkmarks in the above table. Give first priority to those checkmarks that are less obvious.

Page 7 of 7

