THE UNIVERSITY OF BRITISH COLUMBIA

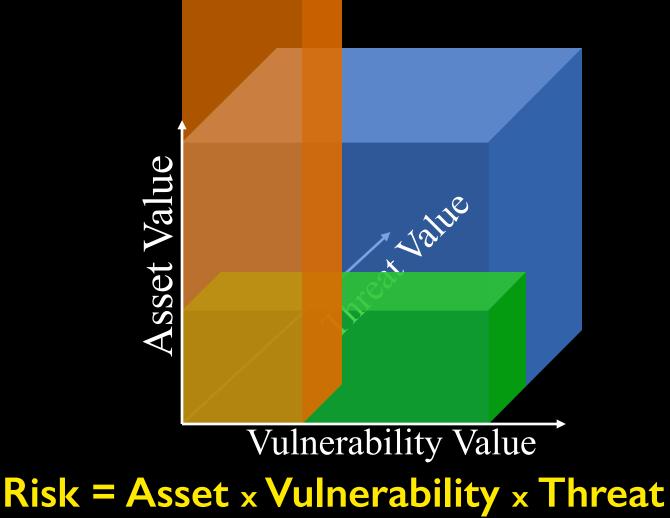
Introduction into Computer Security

what is "computer security"?

- security -- "safety, or freedom from worry"
- thesaurus: peace of mind, feeling of safety, stability, certainty, happiness, confidence.

Buddhist chant of metta (loving-kindness)

- in Pali
- Aham avero homi
- Abyapajjho homi
- Anigha homi
- Sukhi attanam pariharami

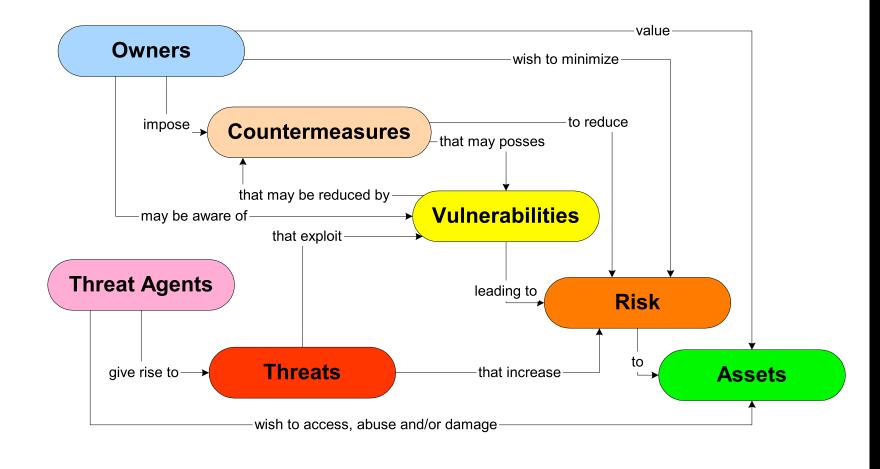

in English

- May I be safe, free from enmity and danger.
- May I be at peace, free from mental suffering.
- May I be safe, free from physical suffering.
- May I take care of myself, and live happily.

what is "computer security"?

- security -- "safety, or freedom from worry"
- thesaurus: peace of mind, feeling of safety, stability, certainty, happiness, confidence.
 - where does it come from?
- how can it be achieved?
 - make computers too heavy to steal
 - buy insurance
 - create redundancy (disaster recovery services)

it's all about risk management


example (photos on a smartphone)

from www.apple.com/ca/ios/whats-new/

what can be done about risk?

- avoid
- transfer
- reduce
- accept

Source: Common Criteria for Information Technology Security Evaluation. 1999

example: food for thought

analyze and suggest

- I. assets at risk and their value
- 2. threats to these assets
- 3. threat agents
- 4. risk management

goals of computer security

• deterrence

- Deter attacks
- prevention
 - Prevent attackers from violating security policy
- detection
 - Detect attackers' violation of security policy

recovery

- Stop attack, assess and repair damage
- Continue to function correctly even if attack succeeds

• investigation

- Find out how the attack was executed: forensics
- Decide what to change in the future to minimize the risk

Solovki Monastery, White Sea, Russia

Castle of Chillon

from www.picture-newsletter.com/chillon/

conventional fortress-based security

Goal: Prevent people from violating system's security policy

Means:

Fortification

- provides safety
- involves layering
- expensive
- requires maintenance
- eventually compromised

Some points about fortresses

- no absolute safety
- one weakness/error sufficient
- extra layers at extra cost
- important to understand threats
- limited defender's resources
- adjust to attacks
- resource suppliers
- distinguishing noncombatants from attackers
- containment

limitations of the fortress analogy

fortress

- against external attackers
- protects only insiders
- defences cannot change

- computer security
- control of insiders

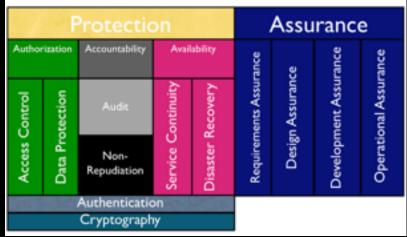
- has to keep system usable
- has to protect from new types of attacks

what computer security policies are concerned with?

- Confidentiality
 - keeping data and resources hidden

Integrity

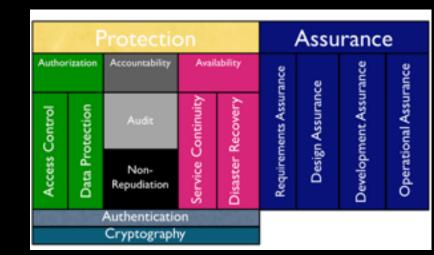
- data integrity (integrity)
- origin integrity (authentication)
- Availability
 - enabling access to data and resources



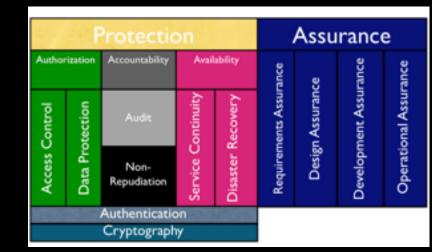
conventional approach to computer security

Protection						Assurance			
Authorization		Accountability	Availability		ance	eo	rance	ance	
Access Control	Data Protection	Audit	Continuity	Recovery	nents Assurance	Jesign Assurance	Development Assurance	Operational Assurance	
		Non- Repudiation	Disaster Recovery	Requirements	Desig	Developr	Operati		
Authentication									
Cryptography									

Protection

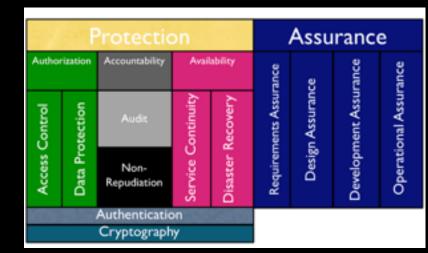

provided by a set of mechanisms (countermeasures) to prevent bad things (threats) from happening

Authorization protection against breaking rules

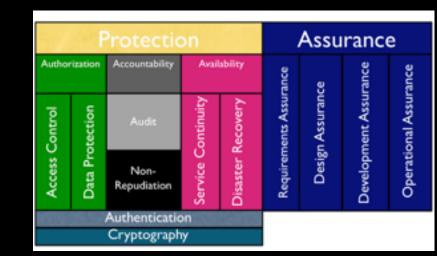

Rule examples:

- Only registered students should be able to take exam or fill out surveys
- Only the bank account owner can debit an account
- Only hospital's medical personnel should have access to the patient's medical records
- Your example...

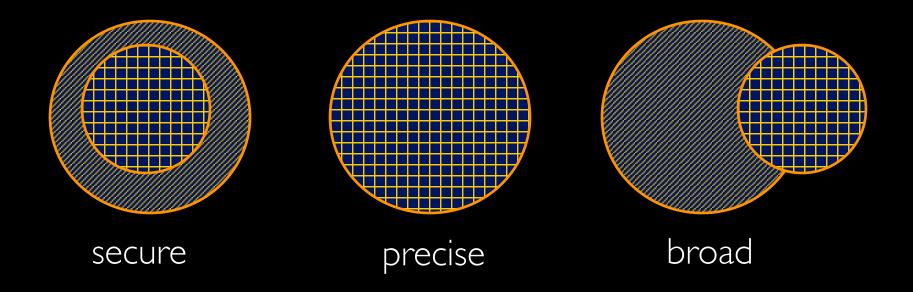
Authorization Mechanisms: Data Protection


- No way to check the rules
 - e.g. telephone wire or wireless networks
- No trust to enforce the rules
 - e.g., mobile devices

Accountability


You can tell who did what when

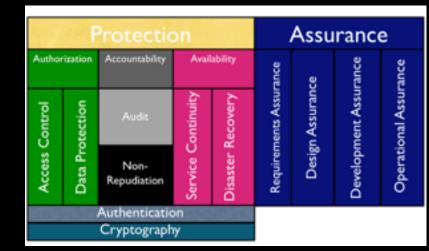
- (security) audit -- actions are recorded in audit log
- Non-repudiation -- evidence of actions is generated and stored



Availability

- Service continuity -- you can always get to your resources
- Disaster recovery -- you can always get back to your work after the interruption

types of mechanisms


set of reachable states

Assurance

Set of things the system builder and the operator of the system do to convince you that it is really safe to use.

- the system can enforce the policy you are interested in, and
- the system works as intended

securing systems

steps of improving security

- 1. analyze risks
 - asset values
 - threat degrees
 - vulnerabilities
- 2. develop/change policies
- **3.** choose & develop countermeasures
- 4. assure
- 5. go back to the beginning

in the following scenario, analyze

- I. Assets at risk and their value
- 2. Threats to these assets
- 3. Threat agents
- 4. Ways to manage risk

Key Points

Protection						Assurance			
Authorization		Accountability	Availability		ance.	се	rance	ance	
Access Control	Data Protection	Audit	Service Continuity	Disaster Recovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance	
		Non- Repudiation							
Authentication									
Cryptography									

key points (cont-ed)

- secure, precise, and broad mechanisms
- Risk = Asset × Vulnerability × Threat
- steps of improving security
- classes of threats
 - disclosure
 - deception
 - disruption
 - usurpation