A Pattern-Matching File Fuzzer for Windows
(Revised November 2007)

Lane P. Feltis, Natalie M. Silvanovich, and Neema Teymory

Abstract — Fuzzing is an emerging area of automated security
testing that involves providing semi-random input to a software
system. This paper describes a novel fuzzer we designed to
overcome the limitations of existing fuzzers. It also details an
analysis of this fuzzer’s performance.

Index Terms — Software Security, Fuzzing, Fuzz Testing,
Automatic Test Software

1. INTRODUCTION

UZZING IS a popular and developing technique for

finding implementation vulnerabilities in software. While a
large number of fuzzers have been developed over the past few
years, few have been designed for fuzzing file-types in the
Microsoft Windows environment. This paper describes a
fuzzer we designed for this purpose. It also presents the results
of experiments we performed, which include the discovery of
one serious security vulnerability in Brava! PDF. We also
compare our fuzzer to existing technology for finding software
vulnerabilities.

II. FuzzING

A. Defining Fuzzing

Fuzzing is a form of automated software testing that involves
providing semi-random input to a software system with the
goal of causing system failure. ‘Failure’ can be defined as
desired by those performing the testing, with the limitation that
it must be detectable in an automated fashion. By far, the most
common application of fuzzing is in software security testing,
where it is used to reveal implementation vulnerabilities. It is
particularly effective in this context, as it produces the same
sort of unintuitive and assumption-free input that typically
exposes security vulnerabilities.

B. Fuzzing Challenges

A major challenge in designing a fuzzer is deciding how to
generate the semi-random input that is provided to the
software under test. On a high level, there are three properties
that are desired in this process. Firstly, the generated input
should be efficient, meaning that it reveals as many bugs as
possible in the software under test in as little time as possible.

Manuscript received November 19, 2007.

L. P. Feltis (e-mail: lane.feltis@hotmail.com).

N. M. Silvanovich (e-mail: natalies@interchange.ubc.ca).
N. Teymory (e-mail: nteymory@hotmail.com).

Secondly, it should be capable of revealing a variety of bugs
and not leave portions of the software out when testing (a
property called ‘coverage’). Finally, the tool should not require
extensive configuration to produce input for a certain piece of
software. Unfortunately, these properties are at odds with each
other, so tradeoffs must be made in fuzzer design [1].

To start, the level of randomness of the input produced by a
fuzzer affects both its efficiency and its coverage. Highly
random input is almost always rejected by software due to
checks on superficial input properties such as header constants
and field lengths, so highly random fuzzers are inefficient.
Meanwhile, reducing the amount of randomness in a fuzzer
reduces the variety of inputs it can create, reducing its
coverage. In selecting the level of randomness of a fuzzer,
there is a tradeoff between efficiency and coverage.

Another choice in fuzzer design is how much knowledge the
fuzzer will have of the format being fuzzed. Of course, this is
not always a choice. For example, if a company is fuzzing
software they are considering purchasing or a closed-source
library they are planning on building into their software, they
may not know the input format at all. That said, even if the
format is fully known, configuring a fuzzer to work with a
specific format is very time consuming. On the other hand, it
allows for fuzzing that has complete coverage and is very
efficient. This is a second trade-off in fuzzing: a fuzzer can be
made more efficient by building in knowledge of the input
format being fuzzed, but at the expense of the time it takes to
acquire that knowledge and put it into a format that the fuzzer
can understand.

C. Current Fuzzing Technology

Currently, a number of fuzzing techniques are used that vary
in the randomness of the input they create and the level of
knowledge of the format they require.

The most basic fuzzers, brute-force fuzzers, generate purely
random input. They are easy to write and require no
configuration, but are very inefficient, as they do not make any
attempt to conform to even basic input requirements [2].

Mutation fuzzers are a step up from brute-force fuzzers.
They take a sample of valid input, called a template, and
produce fuzzed input by flipping random bits in the template.
The number of bits that are altered can often be specified as a
parameter to the fuzzer. An advantage of mutation fuzzers is
that they require minimal set-up and no knowledge of the input
format other than the template. Unfortunately, superficial input
validation in the software being fuzzed often rejects the fuzzed
input created by mutation fuzzers [1]. Also, mutation fuzzers

may not find certain classes of vulnerabilities, such as buffer
overflows, that require an extension, not just an alteration of
field values. In addition, any sort of fuzzing involving
templates runs the risk of having its coverage severely limited
by the template that is selected. This is a very serious problem,
as vulnerabilities tend to occur in uncommonly-used (and
therefore less-tested) software features. These features are
unlikely to be used by the typical input contained in a
template, and therefore will not be covered by the fuzzer at all.

Another type of template fuzzing is pattern-matching.
Pattern-matching fuzzers go through a template file looking for
patterns, such as ASCII strings, and make changes based on
these patterns. They are more efficient than mutation fuzzers,
but have the same coverage problems, as they also use
templates. Pattern-matching fuzzing is used by software
companies [3]; however, there are not a lot of tools using this
technique that are available to the public.

Block-based fuzzing is a technique that requires a complete
knowledge of the input format of the software under test. To
use a block-based fuzzer, one creates a script that describes the
input format and the fuzzer uses this as a basis for creating
corrupt input. Block-based fuzzing has been shown to be very
efficient [4], but configuring it for a new input type is time-
consuming.

III. OUR FUZZER

We decided to create a file fuzzer for the Microsoft
Windows environment, as there are a limited number of tools
for this purpose currently available. Many mutation fuzzers
have been written, but they are not very efficient and must run
for an extended period of time before they find vulnerabilities.
Block-based fuzzing technology is also quite mature, but these
tools take a lot of time and skill to configure. We wished to
create a tool that is more effective than a mutation fuzzer, but
does not require the extensive configuration needed by a
block-based fuzzer.

We decided to use pattern-matching as our fuzzing
technique, as while companies have reported that is has been
effective in software testing, few such tools are available to the
public (the only one we are aware of is Mistress, which has
limited functionality). In addition, we wished to address the
limitations of template fuzzing by creating a tool that uses
multiple templates.

Our fuzzer has three components: a webcrawler that finds
template files, an engine the uses these files to create fuzzed
files and a launcher that opens these fuzzed files using the
software under test and detects and records failures. The
function and design of these elements is described as follows.

A. The Webcrawler

Since limiting the variety of templates used by a fuzzer limits
it coverage, it is imperative that the fuzzer uses templates that
are representative of the scope of valid input. The ideal
template-finding mechanism would have access to the set of all
valid input to the software under test and randomly select
templates from this set. Templates provided by this mechanism
would be completely unbiased towards popular features of the

software under test; the number of templates using a particular
feature would only be determined by the number of possible
inputs that use this feature. Of course, it is not possible to
obtain the set of all valid files of a certain type, as the number
of such files is infinite, so we attempt to approximate this set
by using the set of all files available on the Internet. The goal
of our webcrawler is then to select and download random files
of a given type from the web.

Our webcrawler uses the Google search engine to do this.
To find a single template, the webcrawler selects a random
word from a multi-lingual dictionary and queries Google for
files of the desire type containing this word. It then randomly
selects a template file from those returned.

Unfortunately, this template-selection process is still biased
towards files that use popular software features, as these files
are more likely to appear on the Internet (this is the definition
of popular!). In addition, the fact that all files provided by this
tool are reasonably well-ranked on Google may present some
hidden biases. That said, all existing file fuzzers use a single
template and provide no mechanism or guidance for finding
this template, so it is likely our approach provides substantial
benefit over what is available.

B. The Engine

Our fuzzing engine takes the template files produced by the
webcrawler and uses them to produce fuzzed files. It analyses
templates one-at-a-time, and does not produce inputs that
combine templates.

To create fuzzed files, our fuzzer identifies ASCII strings
within the template file, and resizes them and changes their
content. Resizing strings can reveal buffer overflows in
software, meanwhile changing the content of strings can reveal
format string vulnerabilities and vulnerabilities due to poor
error handling. This technique is usually called ‘string
extension,” although strings can also be truncated or remain the
same size. We selected this method as it is a staple of block-
based fuzzing. Since string-extension has been shown to be
effective in finding vulnerabilities in fuzzers that have
complete knowledge of the format being fuzzed [4], we
suspected that it might also be effective in template fuzzing.

The first step in string-extension is locating strings. Our
engine does this by searching the template file for ASCII
strings, and making note of their location, length and
termination in a string table. Strings that are shorter than five
characters, as well as those in the first twenty bytes of the
template are not included in the string table as these are more
often than not the result of false positives in string
identification.

Once all the stings have been identified, the engine goes
back and tries to identify each string’s length field. The length
field is a construct that is placed before a string and specifies
its length. Our fuzzing engine attempts to identify the length
field by searching the area of the file before a string for a
structure that may represent its length. If one is found, its
position and properties (such as length and endianness) are
recorded in the string table.

When the string table is complete, it is time to use string-
extension to create fuzzed files. To do this, a random string is
first selected from the string table. It is then extended using a

randomly-selected string-extension algorithm. Our fuzzer
supports three such algorithms: extend-insert, extend-
overwrite and extend-rotate. Extend-insert is used in block-
based fuzzers, such as SPIKE [4], as well as a number of
network protocol fuzzers [5, 6]. Extend-overwrite and extend-
rotate are novel and are described below. An example of how
each algorithm extends a string is shown in Fig. 1.

1) Extend-Insert

The extend-insert algorithm assigns a new length to the
selected string and resizes it to be that length. The new length
is selected by a random algorithm that is biased towards
boundary values such as 0x7F, 0x80 and OxFF. The string’s
length field is then updated to display the new length.

Original File

06 [48[75]6D|61|6E|73 |03 Hlu|m]|a s
61]72|65]09|69|6E|63|61)a |r | e i c|a
70161[62|6C|65|02|6F|66fp [a b | I |e olff
07173(74|6F|72|69 |6E|67 s|t]Jo|r]i]ln]sg
12168169167 |68[2D[71 |75 hlilJglh]-]q]u
61|6C|69|74(79]0D|63 |72 I li]t]y c|r
79170(74|6F|67|72161[70)y [p|t]o|g|r]a|p
6816963 (04 [6B|65]79 |73} h | i |c k lely|s
Extend-Insert

06 [48[75|6D|61|6E|73 |03 Hlu|m]|a s
6172]|65|09[69]|6E|63|61)a | r |e i c|a
70161162 [6C|65]|02|6F|66)kp Ja |b || |e o|f
07173(74|6F|72|69 |6E|67 s|t]Jo|r]iln]sg
12168169167 |68[2D[71 |75 hlilg]lh]-]q]lu
42142142142142161|6C[69)B [B|B|B|B A I |i
74179]0D|63 1727970 (74) t |y clrlylp]t
6F 6717261170168 [69|63Jo g |r|a|plh]i]c
04 [6B[65179173 k lelyls
Extend-Overwrite

06 |48(75|6D|61|6E|73 |03 Hlu|m]a s
6172|65[09[69|6E|63|61)a |r |e i c|a
70161162 [6C|65]|02|6F|66)p Ja |b || |e o|f
07(73[74|6F|72]|69 |6E|67 s|jt]jo]r]i]n]sg
12168169167 |68[2D[71 |75 hlilg]lh]-]q]lu
61|6C|69 (74 (79]42 14242 a |1 |i]Jt |y |B|B|B
42 142(74|16F|67|72161]70 BltJofg]|r]al]p
68169(63|0416B|65(79]73)h | i |c klely|ls
Extend-Rotate

06 |48(75|6D|61|6E|73 |03 Hlu|m]a s
61]72|65]09|69|6E|63|61]a |r | e i c|a
7061|162 [6C|65]|02 |6F |66 p |a [b | I |e o|ff
07(73[74|6F|72]|69 |6E|67 s|jt]jo]r]i]n]eg
1216816916768 [2D[71 |75 hlilJglh|-]q]u
6116Cl69|74 17942 |42]42)a |1 |i]t]y |[B]|B]|B
42142142142 142142 142 |42 B|B|[B|B|B|B]|B
42142142142101163 |01 [6BfB |B |B|B C k

Fig. 1. String extension algorithms

Bytes are inserted into or deleted from the string to make it the
new length. The remaining bytes in the file are shifted to
accommodate this change.

In all string-extension algorithms used by our fuzzer, there
are three methods that are used to generate the extra bytes that
are added to a string (the one used in any particular instance is
selected randomly). One of these is pure, non-ASCII random
bytes. The second is a series of format strings. The third is the
character ‘B’, resulting in a string with only ASCII characters.
The character ‘B’ is used instead of a random sequence of
ASCII characters because it tends to cause Windows to throw
an exception in the case of a heap overflow [7].

2) Extend-Overwrite

The extend-overwrite algorithm is identical to extend-insert,
except instead of shifting the byes after an extended string to
make room for the extra bytes, the new bytes simply overwrite
whatever is there. If the new string length is shorter than the
selected string length, the length field is updated and a null
character is inserted at the correct location for the new length
of the string, if the original string was null terminated. Note
that this means if the string selected to be extended by extend-
overwrite does not have a length field or a null termination and
the algorithm selects a new length for this string that is shorter
than it was originally, the fuzzed file produced will be
identical to the template. Fortunately, this scenario is unlikely,
as most strings are null terminated and have length fields, and
the length-selection algorithm is much more likely to extend a
string than to truncate it.

The rationale behind extend-overwrite is that some file
types use absolute offsets in file parsing, and would outright
reject files with inserted or deleted bytes (an example of such
a file type is the Microsoft Excel format). The extend-
overwrite algorithm alters strings without upsetting these
offsets. Of course, the segment of the file overwritten by the
extra bytes is severely damaged, so it is possible that the file is
rejected, even if offsets are not disturbed. The extend-rotate
algorithm presents a more elegant solution to this problem.

3) Extend- Rotate

Extend-rotate attempts to extend the selected string in the
template file without altering offsets within the file. It does this
by shortening adjacent strings in the document, and adding the
extra characters to the selected string. The length fields of all
strings are updated so they will appear valid. The current
implementation reduces the size of the four strings following
the selected string to one.

Extend-rotate does not affect the offsets of a file or
invalidate large portions of it as extend-overwrite does;
however, it is much more adversely affected by errors in the
string table than extend-overwrite is.

Errors in the string table occur for two reasons. First, there
are false positives in identifying strings. For example, if a byte
array happens to randomly have five sequential ASCII
characters in it, it will be identified as a string even though it is
not really one. Secondly, there are situations where there is
uncertainty in determining the length field of a string. Fig. 2
shows an ambiguous string.

The string “M Turing is oft considered the father of modern
computer science” has 0x41 characters.

41(4D|20(54| 751 72| 69| 6E A M Tlu]r|i|n
67120]169] 73] 20| 6F| 66| 74 g il|s of £]t
20{ 63|6F| 6E| 73] 69| 64| 65 cloln| s] 1| d]e
72| 65164] 20| 74| 68] 65] 20 rleld h| e

66| 61]74] 68] 65| 72| 20| 6F flajt|h]e| r 0
66| 20|6D| 6F| 64| 65| 72| 6E mjo|d|e]| r]|n
20 63| 6F|6D| 70| 751 74| 65 clojm|p|ul| t]e
72120]73] 63] 69| 65| 6E| 63 r sfcli]le|n]|c
65| 2E e

Fig. 2. Ambiguous string

Unfortunately, 0x41 is also the ASCII representation of the
character ‘A’. Thus, one cannot be sure whether the ‘A’ is part
of the string or the length field without knowing more about
the file format. In this situation, our fuzzer assumes that all
ASCII characters are part of the string, but regardless of how
this situation is handled, it will result in some strings being
misidentified.

Returning to string alteration, clearly a string that is
misidentified will not be altered correctly, but since extend-
rotate requires a sequence of five strings to all be correctly
identified, it is less likely to work correctly than the other
alteration methods. For example, if one out of every five
strings is misidentified, extend-overwrite will work 80% of the
time, whereas extend-rotate will work only 33% of the time.
This difference widens as misidentified strings become more
common. For this reason, we decided to use both extend-
overwrite and extend-rotate for offset-neutral string extension.

4) Compression Support

Since many file formats compress portions of their content
using GZIP compression, we added compression support. If
the string parser encounters a non-ASCII stream that starts
with the correct token and successfully decompresses resulting
in a buffer that contains ASCII strings, this compressed string
will be noted in the string table. If it is selected to be extended,
the stream will be decompressed and parsed, and have one of
its strings extended. It will then be recompressed, and the
stream in the template file replaced with this new stream,
resulting in a fuzzed file.

C. The Effect of Templates

The launcher we produced for our tool is fairly standard. It
sequentially launches the software under test with each fuzzed
file as a parameter, and then hooks into the process. If it
detects an exception, it logs it, otherwise it kills the process.
The amount of time the launcher waits before killing an
exception-free process can be selected by the user.

IV. TESTING THE TOOL

Since our fuzzer is novel in several respects, there were
several questions we wished to answer with regards to its
performance. First, we wished to compare the efficiency of our
fuzzer to existing template fuzzers. Second, we wanted to
compare the effectiveness of the three string-extension
algorithms to ensure they are all worthwhile, and to decide
how to weight them in selection. Finally, we wanted to explore
the effect of using multiple templates on the variety of
vulnerabilities discovered.

A. Comparing Our Fuzzer to Mutation Fuzzers

1) Procedure and Results

Mutation fuzzing is currently the most commonly-used
template fuzzing technique, so we compared our fuzzer with a
popular mutation fuzzer: iDefence’s FileFuzz. There is very
little variation in the input-generation algorithm used by
mutation fuzzers, so the specific tool selected is not
particularly important.

We decided to focus on the PDF file format for the purposes
of testing, as the file format is publically available but there is
no common API available for parsing it. The result of this is
that a number of free, independently-implemented PDF readers
are available.

We tested the following PDF readers with both our fuzzer
and FileFuzz: FoxIt Reader, SamutraPDF, Brava! PDF and
Easy PDF 2 Text. We produced 8400 fuzzed files using 20
different templates with each fuzzer, and tested them against
each piece of software. The results of these tests are shown in
Table 1. From these results, it is evident that our fuzzer
performs better than FileFuzz.

Code execution vulnerabilities refer to those that can be
exploited to execute arbitrary assembly code. Of the two such
vulnerabilities we found, we confirmed that one was
exploitable by coding up an exploit that allowed for arbitrary
code execution. The second was similar enough that it did not
seem necessary to repeat this exercise.

2) Discussion

We were surprised by the large performance improvement
our fuzzer provided over FileFuzz; we were expecting a more
modest difference. One possible explanation for this is that
since mutation fuzzers are widely used, these programs may
have already been fuzzed by such a tool and the corresponding
vulnerabilities fixed.

B. Evaluating String- Extension Algorithms

Of the 8400 fuzzed files tested against Brava! PDF, three
hundred and fifty-nine of them revealed vulnerabilities in the
software (twenty-one of which were unique). When these files
were generated, the string-extension technique used was
recorded. Therefore, it is possible to determine which string-
extension techniques created files that revealed vulnerabilities
(we will call these successful files). The results of this analysis
are shown in Table 2.

TABLE I
Vulnerabilities found by our fuzzer and FileFuzz
Brava! P}%a;yz Samutra | FoxIt
PDF PDF Reader
Text
DOS 9 | 3 0
Vulnerabilities
Our Fuzzer -
Code Execution) 0 0 0
Vulnerabilities
DOS 0o | 1 0 0
. Vulnerabilities
FileFuzz -
Code Execution 0 0 0 0
Vulnerabilities

TABLE 11
Extension Algorithms Used to Produce Successful Inputs
Technique Number of Percentage of
Successful Files Successful Files
Extend-Insert 101 28%
Extend-Overwrite 83 23%
Extend-Rotate 175 49%

This analysis shows that while all three methods produce
files that reveal vulnerabilities, extend-rotate is the most
effective. In the second version of our fuzzer, we weighted this
technique more heavily when selecting a string-extension
algorithm to run on a particular string.

C. The Effect of Templates

The large number of vulnerabilities revealed in Brava! PDF
makes it possible to analyze how template-selection affects the
effectiveness of a fuzzer. Fig. 3 shows the number of
vulnerabilities found by each template. Different colors
represent different unique vulnerabilities. Templates 19 and 20
appear to be more effective than the others, and roughly half of
the templates do not reveal vulnerabilities at all. Removing the
unique vulnerability that dominates the graph, Fig. 4 shows the
other vulnerabilities more clearly.

250

200 =
150
100 N
50 I
0 e - — |

123 456 7 8 91011121314151617 1819 20

Numberof Vulnerabilities Revealed

Template Number

Fig. 3. Vulnerabilities revealed, by template

=
o

Numberof Vulnerabilities Revealed

o - N w E= wu ()] ~ (o) {\e)
|
|

123456 7 8 91011121314151617 1819 20

Template Number

Fig. 4. Vulnerabilities revealed, by template with dominating vulnerability
removed

It is interesting to note that while some templates find a good
spread of vulnerabilities, no template finds all of them. This
suggests that the webcrawler was an important addition to our
fuzzer; if a single template was used, it could potentially be
one that finds no vulnerabilities. Even if it wasn’t, it would not
find as many as all the templates combined.

V. AREAS FOR FUTURE WORK

Some difficulties encountered in the design process raised
some questions that merit future work. We originally intended
to make our fuzzer work with binary file types as well as those
with ASCII strings; however, it immediately became apparent
that ascertaining the position and length field of a byte array is
unfeasible. While the problem of ambiguous string occurs in
ASCII files, it occurs much more frequently in binary files to
the extent that every possible byte-array is ambiguous.
Research into how this issue can be resolved would be
important to the design of new fuzzers, as well as other fields,
such as reverse engineering.

We also only took a very preliminary look at the effect of
template selection on fuzzing efficiency, more information on
this would be useful. We noted that some templates were more
effective than others, so another interesting question is where
there is a way to predict which templates will be effective in
advance, so that ineffective ones can be avoided.

REFERENCES

[1]1 J. DeMott. “The Evolving Art of Fuzzing,” presented at DEFCON 14,
Las Vegas, Nevada, 2006.

[2] A. Greene, M. Sutton. “The Art of File Format Fuzzing” presented at
BlackHat Japan, Tokyo, Japan, 2005.

[31 P. Oelhet. “Violating Assumptions with Fuzzing.” IEEE Security and
Privacy, vol. 3, issue 2, pp. 58-62, March-April 2005.

[4] D. Aitel. “The Advantages of Block-Based Protocol Analysis for
Security Testing.” Internet: http://www.net-security.org/dl/articles/
advantages of block based analysis.pdf, Feb. 4, 2002 [Nov. 17, 2007].

[5] “Taof The Art of Fuzzing Using Python.” Internet:
http://www.secguru.com/link/taof the art_of fuzzing using_python,
Nov. 2006 [Nov. 17, 2007].

[6] “Peach Tutorial.” Internet: http:/peachfuzz.sourceforge.net/docs/
tutorial/peach-tutorial.htm [Nov. 17, 2007].

[77 D. Aitel. “MSRPC Fuzzing with SPIKE 2006.”
http://xcon.xfocus.org/xcon2006/archieves/Dave _Aitel-
Microsoft_System RPC_Fuzz.pdf, August 2006 [Nov. 17, 2007]

Internet:

