Nov. 2007

Security Analysis of Microsoft
Notification Protocol

Oliver Zheng, Jason Poon

Abstract — This report studies the security of Microsoft
Notification Protocol (MSNP), the underlying protocol used in
Windows Live Messenger (WLM). Through the security analysis
of the protocol, several security vulnerabilities were discovered
and exploited by using our technique of MSNP-based TCP
hijacking. MSNP-based TCP hijacking is a method of re-syncing
the TCP stacks of the client and the server following an injection
of a packet. By applying our developed technique, we managed to
successfully spoof messages and the identities of others. This
attack may be prevented if MSNP was encrypted or the protocol
was changed to eliminate the use of certain commands.

Index Terms — MSNP, security analysis, computer network
security, instant messaging

I. INTRODUCTION

FIRST released in 1999, Windows Live Messenger has since
grown to become one of the world’s most popular instant
messaging service. Windows Live Messenger, its predecessors
MSN Messenger and Windows Messenger, and other third
party instant messaging clients employ the Microsoft
Notification Protocol (MSNP) to connect to the .NET
Messenger Service. With over 300 million users worldwide, it
is imperative to ensure that WLM and its underlying protocol,
MSNP, are secure from attacks. Through the security analysis
of MSNP, we will determine if a user’s privacy and
confidentiality are sufficiently protected while using instant
messaging clients. The goal of our research is to identify any
security flaws present in MSNP, exploit the weaknesses, and
develop countermeasures for any possible vulnerability in the
protocol.

In the next section, the architecture and underlying protocol
of WLM will be described. Section III analyses the protocol to
determine any security vulnerabilities present, while section
IV exploits the vulnerabilities that were discovered. Section V
discusses the methods of correcting the security flaws
discovered.

II. WINDOWS LIVE MESSENGER OVERVIEW

A. Architecture

Windows Live Messenger (WLM) is an instant messaging
client that utilizes the .NET Messenger Service. The .NET
network consists of a centralized cluster of servers; each

Manuscript received November 19, 2007.
O. Zheng (e-mail: ubct+eece412@oliverzheng.com).
J. Poon (e-mail: mr.j.poon@gmail.com).

individual server provides WLM clients with a specific service
[1]. Two of the main servers within the cluster include the
Notification servers (NS) and Mixers.

Upon a user’s login, the WLM client opens a persistent
transmission control protocol (TCP) connection to the NS; this
connection must always be active, else the client will be
disconnected from the service. Presence information (e.g.
online status, user’s display name) is relayed through the NS.
The user broadcasts its status to other WLM users by updating
the NS with new information. The NS then forwards this
information to all subscribed clients (i.e. contacts who have
this user on their list). Similarly, when other contacts update
their status, the NS pushes updates to the user, all through the
same TCP connection.

In the event that the user intends to initiate a conversation
with a contact, the user requests for a session through the NS.
The NS returns a session authentication ID and network
destination internet protocol (IP) address and port that points
to another server in the cluster called a Mixer. Mixers handle
all forms of communication not meant as broadcasts, including
instant messages and file transfers. The user connects to the
designated Mixer and establishes another persistent TCP
connection. Through this connection, the user invites others
contacts to join the conversation. Utilizing a Mixer to interact
between WLM clients abstracts the client’s information from
other WLM clients [2]. The invited contacts receive an invite
through their NS connection and proceed to connect to this
Mixer.

In essence, the connection with the NS controls all presence
information and message invites, while connections with the
Mixers are created upon requests and are used to relay chat
messages. Figure 1 provides a visual representation of the
WLM architecture.

Initial Login
Presence Information

WLM Client #1 Notification Server

Mixer

Initial Login
Presence Information

WLM Client #2

Instant
Messaging
Sessions

Instant
Messaging
Sessions

Figure 1. WLM clients are never in direct contact with other clients.
Information is relayed through intermediary servers. Each server within the
NET messaging service serves a unique function.



Nov. 2007

B. Protocol

The Microsoft Notification Protocol (MSNP) is a text-based
application protocol, the topmost layer of the Open Systems
Interconnections (OSI) reference model [3]. With the
exception of the initial login of the user to the .NET service,
all communication between the WLM client and servers are
expressed through MSNP.

Although the current version of MSNP is 15, the protocol
has been proprietary and has not had a public specification
since version 2 [4]. Due to the text-based nature of the
protocol, attempts to reverse-engineer have proven to be
relatively successful. Contributions to public documents
[5][4][6] detailing the mechanisms of the protocol have
propelled the growth of third-party implementations of NET
Messenger clients. These third party clients include Pidgin,
Trillian, and Jabber.

MSNP is composed of a series of UTF-8 encoded
commands which may or may not require confirmation replies
from the received party. Both NS and Mixers can send
commands to the WLM client and vice versa. These
commands are used to indicate a change in the state of
contacts or the arrival of new instant messages.

III. DESIGN FLAWS AND SECURITY VULNERABILITIES

A. Violated Principles of Designing Secure Systems

MSNP achieves a secure login process through secure
socket layer (SSL). Following the successful authentication of
a user’s identity, a dedicated TCP connection is opened
between the NS and the user; this connection serves as a point
of entry for all commands between the two endpoints. Traffic
on this TCP connection is unencrypted and both endpoints
assume that it is a secure channel. As a result, this design fails
to obey several principles of designing secure systems: correct
assumptions and least common mechanism.

Although MSNP has a built-in feature to ensure the validity
of the connection, this feature can be exploited by an attacker.
Two commands, pings (PNG) and challenges (CHL), are used
by WLM clients and servers to keep the TCP connection alive
and prevent Network Address Translators (NATs) from
closing idle sockets [5]. However, it is unnecessary for both
endpoints to have the capability to ping the other party. This
protocol design violates the design principle of economy of
mechanism. This design flaw is exploited by our technique as
explained in section IV.C.

The third MSNP design flaw violates the principle of
complete mediation. Once logged in, all commands sent
between the client and the server(s) are not authenticated. No
security checks (e.g. challenge-response) are generated for
actions that should be authorized. For instance, when the user
receives an invite to connect to a Mixer session, neither the
Mixer nor the client authenticates the other party. The only
checking that is performed is to ensure that the 3™ party that
invited the user to the messaging session belongs to the
“allowed” list and not the “blocked” list.

Another inherent vulnerability of MSNP deals with the fact
that the WLM client trusts all messages from the NS, which

again is related to the first flaw. Furthermore, the assumption
that all messages from the NS are authenticate opens a more
serious vulnerability. Users are capable of accessing their
Windows Live Hotmail service through their WLM client.
Although authentication through proper login is secure, the
assumption the WLM client makes is that its credentials are
being sent to the NS and not an attacker. This assumption
opens a security hole in which an attacker can pose as the NS
to obtain the login credentials of a user. Once obtained, the
attacker will then have remote access to the victim’s private
email accounts.

All of these vulnerabilities affect the latest versions of all
implementations of MSNP, including WLM 8.5, Pidgin 2.2.2,
and Trillian 3.1.7.

B. Confidentiality, Integrity, and Availability

Computer security policies focus on three core goals:
confidentiality, integrity, and availability of information [12].
However, the security vulnerabilities discovered in MSNP
greatly increase the risk in all aspects of computer security.

The unencrypted nature of the protocol breaches the
confidentiality of the user’s privacy. All of the victim’s
activities including instant messaging conversations are visible
to an attacker through a simple packet sniffer.

By applying the technique of application-based TCP
hijacking which is further described in section IV.C, the origin
of the data can no longer be assured. Through packet injection,
it is possible to impersonate the NS and send a packet to the
client.

Furthermore, the availability of the .NET messaging service
is crucial as many users rely on it as a form of communication.
However, it is possible to stage a denial of service attack on a
WLM client by bombarding the client with either TCP FIN
packets or the MSNP ‘OUT’ command. These two packets
will close the TCP connection and sign the user out,
respectively.

IV. EXPLOITS

A. Setup and Tools

For our test environment setup, Windows XP with Service
Pack 2 and the latest version of Windows Live Messenger,
version 8.5, were installed within a virtual machine using
Microsoft Virtual PC 2007. The virtual machine acts as the
victim, and the hacker performs his attacks through the host
machine.

The rationale for using a virtual machine was to allow the
hacker a simplified mechanism to sniff the victim’s packets
and disallow any modification of network traffic going to and
from the victim’s machine. Through this setup, the hacker will
not be able to access or modify any resources within the
virtual machine (i.e. the victim). This assumption is fair since
in a public network it is likely that the hacker has access to the
sniffed packets of neighbouring machines yet is not able to act
as the man-in-the-middle as modern switches and routers have
been setup to circumvent this security concern.

Furthermore, our exploits make use of WinDump, a



Nov. 2007

command-line packet sniffer, and Bittwist, a command-line
packet editor and generator. Both of these programs are open
source tools and are publicly available on the Internet. We
have also developed several Perl scripts and a server
application written in C to assist in automating various tasks to
exploit the security vulnerabilities within MSNP.

All of the exploits deal with network packet manipulation,
specific to MSNP. The hacker does not require any
modification of the WLM client running on the victim’s
machine.

B. Unencrypted Messages and Files

Although the initial login of the user is performed through
SSL, and therefore not viewable in plaintext, all other
messages are unencrypted. As a result, all commands and
messages sent and received by the WLM client can be viewed
using a packet sniffer such as Wireshark or TecpDump. The
data exposed in the unencrypted network traffic include and is
not limited to the email addresses and display names of a
user’s entire contact list, presence updates of the user and their
contacts, and all instant messages and file transfers sent and
received by the user. By using simple packet sniffers, hackers
are capable of compromising the privacy and confidentiality
of WLM users.

C. Application-Based TCP Hijacking

Traditional TCP hijacking is a form of the man-in-the-
middle attack and involves address resolution protocol (ARP)
cache table poisoning of either one or both sides of the TCP
connection [7]. The attacker then acts as a relay between the
two endpoints and will have the ability to inject packets to
either side without disconnecting the connection.

While TCP hijacking is applicable to all applications that
utilize TCP [10], it is often infeasible and a waste of resources
to relay the entire conversation between the two endpoints. As
a result, we have developed a new technique — application-
based TCP hijacking. Application-based TCP hijacking is a
variation of the traditional TCP hijacking method and very
effective in compromising victims. By taking advantage of the
ping and challenge commands used in MSNP, our technique
accomplishes two goals: injection of a spoofed command to
either the client or the server and maintaining the connection
between the two endpoints. The latter goal of keeping the TCP
connection alive is crucial in keeping the victim oblivious to
the exploit.

In order for TCP packets to be accepted by the destination
application, sequence and acknowledgement numbers are
required to match the expected values of the destination TCP
stack [8]. As shown in Figure 2, if an attacker were to inject a
packet with the correct sequence and acknowledgement
numbers (which can be obtained from sniffing network
traffic), the recipient of the injected packet would respond
with a TCP acknowledgment (ACK) to the other end of the
TCP connection, which would ACK back to indicate that no
such packets were sent. This back and forth of ACK-ing
creates what is known as an ACK storm and will eventually
lead to the disconnection of the TCP connection [9].

1. Injects Packet with
correct Seq/Ack

Attacker

2. Acknowledges received
data with ACK packet

-

3. Confused client resends
last ACK in attempt to re-syrﬁ

4. (2) and (3) repeat until

disconnection occurs . Notification Server

WLM Client

Figure 2. An injection of a packet will lead to an ACK storm which will
eventually cause the disconnection of the WLM client.

Assuming the TCP connection was somehow kept alive,
further messages sent between the client and server would lead
to another ACK storm as the sequence numbers between the
server’s and client’s TCP stack have become misaligned due
to the injected packet.

Our technique of application-based TCP hijacking prevents
the ACK storm and maintains the connectivity between the
server and the client. For each injected packet that is to be
sent, a carefully calculated number of pings and challenges are
sent to the server and client. Through this process, the
sequence numbers can be re-synced resulting in no ACK
storm and the maintenance of the TCP connection.

A simplified example is shown in Figure 3 where the
hacker’s objective is to inject a packet of 30 bytes to the client
(victim) posing as the NS. Server ACK is the sequence
number that the server believes the client is at; client ACK is
the sequence number the client believes the server is at. The
hacker makes use of pings to the server (10 bytes) and client
(5 bytes) and the responses from the server (20 bytes) and
client (10 bytes) in order to create a gap in sequence numbers
in which the spoofed packet fits. Note that it is the due to the
different sizes of pings to and responses from the server and
client that make this hack successful. After sending two pings
and receiving two responses from the server, the hacker then
sends two pings to the client and receives two responses. Now
the client believes that the server’s sequence number is at 10,
while in reality the server has sent 40 bytes of data and will
continue to send packets starting at sequence number 40. This
creates an opportunity for the hacker (who designed for this to
occur) to send 30 bytes of information to the client. The 30
bytes of information could contain any information and the
client will accept it believing it originated from the server.
After this last spoof message, the sequence numbers are lined
up again, as client SEQ equals server ACK and server SEQ
equals client ACK.

Another way of comprehending this method of attack is that
for every byte of data the hacker wishes to send, the hacker
must also force the spoofed source of the message to send an
identical sized packet. For instance, if the hacker wishes to
send 30 bytes of data to the client, the hacker has to somehow



Nov. 2007

force the server to actually send 30 bytes of data such that the
sequence numbers of the client and server are still
synchronized. The hacker accomplishes this by injecting
packets to ping the server; however, during this process, the
pings themselves require the client to actually send the same
sized packets as the ping. The hacker achieves this by pinging
the client. As a result, in order to successfully inject a packet,
the hacker must also ping the server ‘x’ times and the client
‘y’ times for their sequence numbers to line up. The values of
‘x” and ‘y’ can be solved using simple algebra.

In reality, the pings and responses have variable but
predictable lengths. Our exploits utilize a Perl script that sniffs
network traffic to automatically calculate the correct number
of pings and challenges to send.

D. Command Spoofing

By applying application-based TCP hijacking techniques, it
is possible to alter a user’s WLM status. For example, the
modification of a user’s display name requires the injection of
a single packet in which its payload is:

PRP 123 MFN hacked

The above packet consists of the command (PRP),
transaction ID (123), my friendly name (MFN), and the new
display name (hacked).

In another scenario, an attacker wishes to alter a user’s
personal message to display “oliver+jason!”. This can be done
by sending the following command:

UUX 1234 131
<Data><PSM>oliver+jason!</PSM>
<CurrentMedia></CurrentMedia><MachineGuid>
{01A9EEE1-3A31-4C46-9EDB-2ACEBO26B6D4}
</MachineGuid></Data>

The UUX command sets a user’s personal message or
“currently playing” song and is followed by the transaction ID
(1234) and payload size (131). The contents of the payload
include the personal message (oliver+jason!), the current
media, and the machine globally unique identifier.

Following the injection of these packets, it is necessary to
utilize application-based TCP hijacking to re-synchronize the
sequence and acknowledgement numbers of the two endpoints
to prevent disconnection of the victim from the service.

The above two hacks both occur without the victim’s
knowledge. Altering either the user’s display name and/or
personal message will cause presence updates to be pushed to
the user’s contacts, but the user will not be aware of any
alterations to their information. These hacks are possible due
to the assumption by both endpoints that all messages received
are authentic and therefore do not require authentication.

45
(7]
g
a 40
£
2 35 —
(]
Ko}
£ 30 —
=]
2
% 25
<
2 20
@
o
K 15
©
g 10
E
5 5
5]
< 0
Server SEQ Server ACK Client SEQ Client ACK
& Ping 0 10 0 0
- Response 20 0 0 0
& Ping 0 10 0 0
- Response 20 0 0 0
- Ping 0 0 0 5
B & Response 0 0 10 0
m - Ping 0 0 0 5
B & Response 0 0 10 0
- Spoof 0 0 0 30

Figure 3. Application-based TCP hijacking takes advantage of the MSNP asynchronous commands PNG and CHL to create a disparity between the sequence
numbers of the TCP stacks of the notification server and WLM client to successfully inject a TCP packet.



Nov. 2007

E. Identity Spoofing

Another application of the MSNP-based TCP hijacking is
the spoofing of an instant messaging session. When a contact
sends a message to the user, the NS notifies the user of a
Mixer request. The user then connects to the Mixer and the
Mixer will notify the user of the contact’s identity and relay
messages. This attack spoofs the notification from the NS to
the user and forces the user to establish a connection to a
spoofed Mixer, which will then spoof the identity of the
contact who is attempting to talk to the user.

The victim will not be able to see anything amiss and will
assume that it is an authentic instant messaging session.
However, the hacker is capable of impersonating any contact.

The specific message for inviting the victim
(eece412_bob@hotmail.com) to the Mixer session is:

RNG 1312697181 67.207.145.17:1863 CKI
17021696.318151 eecedl?2 alice@hotmail.com
Alice U messenger.msn.com 1

After sending a pre-calculated number of pings to the server
and challenges to the client, the TCP sequence numbers leave
a gap of exactly the size of this message. After sending this
message, the TCP connections of both the server and client are
re-synced, and the client will attempt to connect to the Mixer
whose [P address and port is specified in the RNG message. In
this case, the client will connect to IP 67.207.145.17 and port
1863.

As part of the exploit, we wrote a multi-threaded server
application, hosted on 67.207.145.17 port 1863, which is
capable of handling Mixer connections. As soon as the victim
connects to this address, the Mixer will send the identity that
the hacker is attempting to impersonate, in this case, Alice
(eece412_alice@hotmail.com).

IRO 1 1 1
1985855532

eeced4l? alicefhotmail.com Alice

The victim will then recognize the email address as a
contact on their contact list and assume that the instant
messaging session just established is with Alice
(eece412 alice@hotmail.com) where in actuality, it is with a

hacker. All messages are relayed through this fake Mixer
server, and the hacker, typing in front of this Mixer
application, can pose as the contact Alice to the full extent of a
regular contact.

F. Additional Exploits

A few other interesting exploits include the modification of
a victim’s contact list. Commands are sent to the NS from the
client to block, unblock, add, or delete contacts. Although an
attacker can easily inject a packet to instruct such commands,
the latest version of MSNP associates the contact list with an
authenticated SOAP service. Therefore, for each command to
be successfully completed, in addition to the MSNP command
sent to the NS, a coupled command has to be sent to a central
SOAP service using SSL.

Another critical exploit we investigated was WLM’s
integration with Windows Live Hotmail. Users are capable of
checking their email by clicking a button inside WLM,
launching a browser with an automatically authenticated
session into the Hotmail email service. According to the
(outdated) documents detailing the reverse-engineered
protocol [5][4][6], WLM accomplishes this by generating a
temporary HTML page that submits hashed login credentials
to an HTTPS server. As these credentials are authenticated
using SSL, an attacker will not be able to view the
information. However, the hacker is able to spoof the MSNP
command that sends the uniform resource locator (URL) of
the email inbox, where WLM redirects the temporary HTML
page. Multiple attempts were made to inject a packet with a
spoofed URL to the victim where the credentials could be
submitted to the attacker. That spoofed URL could then
redirect the user to the authentic Hotmail service.
Theoretically, the exploit should work, and the victim would
not realize that the hacker has obtained credentials to login to
Hotmail as the victim. Unfortunately, the exploit did not
achieve the desired result. The victim was always redirected to

A

Fle Edt Actions Tools Hep

M peced12_alice@mhotmail.com

v
=

Lt
L=
4

hey
Hi alice

you are being hacked

Figure 5. Attacker's perspective of the spoofed Mixer session. The user is

able to spoof the identity of any contact. Figure 4. Victim's view of the spoofed Mixer session. Note that the instant

messaging session with the attacker looks authentic.



Nov. 2007

the HTTPS server. An explanation of this failure was that the
URL is actually contained as part of the WLM binary and
cannot be modified by the NS.

G. Feasibility

All of these hacks require two abilities — the hacker requires
the capability to view the victim’s network traffic, and the
hacker has the ability to send packets with the media access
control (MAC) and IP addresses of the victim and the NS
server. In our setup of a virtualized victim, both of these
requirements are satisfied. In a publicly switched network,
these two assumptions can also prove true. The second
requirement depends on the hacker’s gateway switch or router.
If a packet could contain a range of IP addresses, it is likely
that the victim’s IP address will be one of them.

V. COUNTERMEASURES

A. Encryption of Messages

Encrypting the messages between the WLM client and the
server will greatly increase the user’s privacy. SimpLite-MSN
achieves this by encrypting all messages between supporting
WLM clients using RSA encryption [11]. With SimpLite-
MSN, the user is sets up a pair of keys the public key is
automatically distributed to contacts that support SimpLite-
MSN. Should the contacts choose to accept the public key, the
two WLM clients can establish a session key to be used for
encrypting the instant messaging conversation.

Simp Lite-MSN M|

Cptions|

Sirnp Lite-tSM |
Ophionz

Authenhicated and
encripted
protected identity@gmail, com
[RSA £ AES-128 bits)

Secway|

Unenciypted:
pyratopiat@hotmail. com
[ni Simp remately)

Secway

Figure 6. SimpLite-MSN provides usable security with recognizable dialog
boxes displaying the security status of the instant messaging session. Green
notifies the user of a secure session, while red notifies the user of an unsecure
session.

This method of encryption enables the confidentiality of
messages. It also provides, to some degree, integrity of
messages. If the user knows that a contact has the capability of
encrypting messages, then the identity spoofing hack
described earlier might not carry as much weight, given that
the user knows it may not be who the contact claims to be.

B. Redesign the Protocol

The protocol design of allowing bidirectional pings opens
up the opportunity for attackers to successfully spoof
messages. This inherent flaw, while meant as a feature, is the
main reason why these attacks work. If this feature was
removed from the protocol and only a one-sided ping was
allowed, hackers would not be able to spoof a message and
maintain the integrity of the connection.

While this solution would require modification to the server
applications that operate the NS, it would not break backward
compatibility since the lack of a ping does not result in

alteration of connection states. The original problem this flaw
was intended to address — NAT connections — could be
regulated by setting timeout periods for the connections that
do not send pings to the server. Instead of actively querying a
connection status, the server could wait a certain time for the
ping from the user before disconnecting potentially closed
connections.

VI. DISCUSSION AND CONCLUSION

The implications of an unsecure popular instant messaging
service are rather severe. To say the least, personal privacy is
compromised. Additionally, as businesses begin to adopt
technologies such as WLM, damages to the business can
originate from exposed confidential business decisions or
impersonated messages. As a result, we advise all users to
reconsider their use of IM clients using the .NET messaging
service for communication requiring confidentiality and
integrity.

The design of Microsoft Notification Protocol did not
follow several principles of designing secure systems. As a
result, the protocol contains a plethora of security
vulnerabilities that can easily be exploited by an attacker. By
applying our technique of MSNP-based TCP hijacking, it is
possible to decrease the overall security of MSNP in regards
to confidentiality, integrity, and availability. Since our exploits
attack the fundamental protocol itself, the only
countermeasure to our attacks is to redesign the protocol.

REFERENCES

[1] Charles. (2006, July 13). Windows Live Messenger — What. How. Why.
[Online] Available:
http://channel9.msdn.com/Showpost.aspx?postid=215459

[2] N. Williams and J. Ly, “Securing Public Instant Messaging (IM) At
Work” Centre for Advanced Internet Architectures, Swinburne Univ. of
Technology, Melbourne, Australia. Rep. 040726A , July 2004.

[3] C. Sanders, “Packet Analysis and Network Basics,” in Practical
Packet Analysis. San Francisco: No Starch Press, 2007, pp. 4-7

[4] P. Piccard, B. Baskin, C. Edward, G. Spillman, and M. Sachs. Securing
IM and P2P Applications for Enterprise. Rockland, MA: Syngress
Publishing, 2006, pp.99

[5] M. Mintz and A. Sayers. (2003, Dec 19). MSN Messenger Protocol.
[Online]. Available: http://www.hypothetic.org/docs/msn/index.php

[6] 2007, June 4. MSNPiki: Unofficial MSN Protocol Documentation
[Online]. Available: http://msnpiki.msnfanatic.com/index.php/

[7] M. Stamp. “Network Security Basics” in Information Security:
Principles and Practice. Hoboken, NJ: John Wiley and Sons, 2006, pp.
349- 350

[8] D. Comer and D. Stevens. Internetworking with TCP/IP. Upper Saddle
River, NJ: Prentice-Hall, Inc., 1999, pp.200-202

[91 M. Gregg. Hack the Stack: Using Snort and Ethereal to Master the 8

Layers of an Insecure Network. Rockland, MA: Syngress Publishing,

2006, pp.209-211

J. Scambray, S. McClure, and G. Kurtz. Hacking Exposed: Network

Security Secrets & Solutions. NY: McGraw-Hill Publishing, 2001,

pp-530-533

[11] W. Stallings. Cryptography and Network Security Principles and
Practices. Upper Saddle River, NJ: Prentice-Hall, Inc., 2006, pp.257-
259

[12] Beznosov,
unpublished.

[10

[l

Konstantin, “Introduction to Computer Security”,



	I. INTRODUCTION
	II. Windows Live Messenger Overview
	A. Architecture
	B. Protocol

	III. Design Flaws and Security Vulnerabilities
	A. Violated Principles of Designing Secure Systems
	B. Confidentiality, Integrity, and Availability

	IV. Exploits
	A. Setup and Tools
	B. Unencrypted Messages and Files
	C. Application-Based TCP Hijacking
	D. Command Spoofing
	E. Identity Spoofing
	F. Additional Exploits
	G. Feasibility

	V. Countermeasures
	A. Encryption of Messages
	B. Redesign the Protocol

	VI. Discussion and Conclusion

