Analysis of the Sophos Update Mechanism

Marco Gonzalez, Jeffrey Herron, Zita Hiu Kit Wong, Ge (Grace) Yu

marcog@ece.ubc.ca, jherron@interchange.ubc.ca, zitawong@interchange.ubc.ca, graceyyyl 16@yahoo.com

Abstract-The Sophos Anti-Virus updating mechanism has
been found to be insecure due to a lack of authentication
leading to a client side weakness to various spoofing attacks.
In this paper, we demonstrate that it is vulnerable to three
attacks, a man-in-the-middle attack, a packet injection attack,
and a DNS poisoning attack. Through these attacks we have
found that it is possible to fake up-to-date status possibly
leaving end systems unknowingly more vulnerable to various
types of malware. Each of these attacks succeeded in denying
updates and forging up-to-date status on both virtualized and
physical machines.

I. INTRODUCTION

In today’s networking environment, a PC’s
security relies heavily on consistent updates from
trusted software vendors. As such, ensuring that
these update mechanisms are secure is just as
important as the security that the updates provide
once installed. However, despite this fact, many
software companies tend to treat distribution of
their updates as a secondary task.

Securing updates is an important question that
is being addressed by a number of different
companies in the software market. For instance,
Microsoft Windows Update uses SSL (Secure
Socket Layer) encryption and hashes single
updates and certificates for each update. SSL is
used to encrypt the information that is transferred,
to prevent hackers from tampering with
information that is being transferred, and to
ensure that the Windows Update agent is
transferring data from an authorized Microsoft
server [1]. Another major player in the anti-virus
market is McAfee Anti-Virus, which uses

sophos itservices ubc.ca

1) Hitp request for master upd

authenticated binaries, but it does not authenticate
the connection [2] so it too may be vulnerable to
many of the same attacks described in this report.

Upon examining Sophos Anti-Virus, the anti-
virus software provided for free to UBC students
by the UBC IT Department, we have identified a
severe flaw in the update mechanism. When a
user requests an update, the Sophos client uses
non-authenticated HTTP packets to check if there
is an update. Because of this, it is a simple matter
to deny updates to clients through various attacks.
Through these attacks, we also have found that it
is possible to fake up-to-date status on the client.
This would deceive users into believing that
his/her PC is safe from malware. Another critical
implication is that it may be possible to send
corrupted data, which would leave end systems
even more vulnerable to malware. While we did
not have the time to pursue this further and
actually corrupt the data, it is certainly an area for
further research. However, denying service
updates for Sophos Anti-Virus leads to less secure
systems on the network, and thus compromises
the network as a whole. This paper discusses in
detail the three attacks that we have made, the
man-in-the-middle attack, a packet injection
attack, and a DNS poisoning attack, to prove the
vulnerabilities of the Sophos Anti-Virus updating
mechanism.

-

— 1) Http responses with master upd

‘ 4) Requests files to be updated or terminates connection if up to date

) =/D

3) Compares file
versions in
master upd to
local file versions

Figure 1. Sophos Update Process

II. ANALYSIS

A. Sophos Update Mechanism

First we needed to establish how Sophos Anti-
Virus actually updates the client. We did so by
using the Wireshark packet sniffer to examine the
entire update process. We took samples over a
week period from several different machines.
From this sample set we determined that the
update mechanism is done in four steps as shown
in Figure 1. First the Sophos client sends a HTTP
GET request for master.upd to the UBC Sophos
update server (in this case,
sophos.itservices.ubc.ca). The Sophos update
server responds with master.upd which contains
the current file versions hosted by the server.
The client then checks the file versions hosted by
the server against it's own file versions and then
will request files as necessary. If no files need to
be updated, the client will simply terminate the
connection.

B. Man-in-the-Middle Attack

We decided to first implement a man-in-the-
middle attack due to the level of control the
attacker has on the communication between the
two parties. The basis of the attack is illustrated
below in Figure 2. However, one of the

sophos itservices ubc.ca Fve

difficulties in a man-in-the-middle attack 1is
determining how exactly the attacker (Eve) will
become the man-in-the-middle (MitM). Due to
the fact that this is a project on Sophos update
security and not how to setup a MitM attack, we
chose to forgo the details and simply manually set
up Eve as a proxy for all traffic from the client
(Alice). In order to accomplish this, we
configured Webscarab running on Eve to act as
the proxy server and had it listening on port 8008.
From here, we set the proxy settings on Sophos
update to use Eve's IP port 8008 as the proxy
server. We then set out to collect samples of the
master.upd files transferred between Alice and the
Sophos update server. After saving the initial
conversation between the client and update
server, we then modified any response to a later
request to return instead the original master.upd
from the first conversation. In this manner we
successfully utilized a MitM attack to delay
updates to client for over a week, however it
could have continued indefinitely.

C. Packet Injection Attack

Another vulnerability of the update mechanism
in Sophos is that any entity can listen (once again,
Eve) to the packets between the server. Once a

Alice
2) HTTP request relayed 7
) ‘) qu y — ‘ 1) HTTP request for master.upd — $) Compares file
— 3 puy puy ersions i
3) real master upd response b 4) out-of-date master upd relayed b ;E;:é:;ll:d o
‘ 7) Terminates connection ‘ 6) Terminates connection " local file versions

Figure 2: Man-in-the-Middle Attack

sophos itservices ubc.ca

2) out-of-date master.upd sent

Alice

’ et

1) HTTP request for master upd

] ‘
4)HTTP response with master upd

p— 3) Compares file
—_ versions in
master.upd to
' ‘ local file versions

‘ 5) terminates connection

Figure 3. Injection attack

update request is sent, Eve can inject a spoofed
response from the server containing an out of date
master.upd. This attack is further outlined in
Figure 3. In order to implement this attack we
used a custom packet generation program,
Wireshark and Webscarab.

We programmed our packet generator in Java
using the Jpcap library. Our program would create
TCP packets with the valid MAC address of Eve
in order to be properly routed, but with the source
IP address and port number of the Sophos server.
The payload contained the Dbyte-stream
corresponding to a HTTP packet header from the
Sophos server and the out of date master.upd,
both of which were captured from previous
exchanges between the client and server.
However, three fields need to be set on a per-
connection basis. These consist of the client side
TCP port, the sequence number (SEQ) and the
acknowledge number (ACK). The SEQ and ACK
numbers increment throughout the packet
exchange to ensure packet order and check for
packet loss, whereas the port number is semi-
randomly assigned when the TCP connection is
initialized.

Webscarab was used as a proxy in order to
introduce a delay between the client and the
server. The difference between this attack and the

local DNS server
— ~] ‘ 1)DNS request
2)Responds with
poisoned DNS entry

sophos itservices ubc.ca

3) Compares file
versions in

master.upd to
Eve local file versions

3) HTTP request for master upd

4)out-of-date master upd response

‘ 6) Terminates conmection

Figure 4: DNS Poisoning Attack

MitM attack is that we did not use Webscarab to
alter any portion of the packets. We needed this
delay in order to compensate for manually
altering the fields in the packets that we generate
so that they will be accepted as valid packets. The
fields we needed to alter on a per-connection
basis were the client-side port number and the
SEQ/ACK numbers. By listening in on the
previous packets of the exchange using
Wireshark, we were able to assign the appropriate
values to those fields to have our program create a
valid spoofed packet. As long as this spoofed
packet arrives before the response from the
Sophos server, it is accepted as the actual
response.

D. DNS Poisoning Attack

DNS poisoning consists of modifying or
providing false data for entries in a DNS server or
cache, so that a DNS query for a domain returns a
false IP address [3]. This false IP address could be
that of an attacker's server.

We configured three different machines. The
first of these was Alice who is a regular Sophos
client. Eve is a fake Sophos server hosting an out
of date master.upd. Lastly, we used the host
machine to act as the local DNS server for Alice.
This topology and details of the attack are shown
in Figure 4 for further clarification. Notice how
the authentic Sophos server is not actually
involved in the entire update process.

First, we ran a Windows DNS server program
called Simple DNS Plus on the host machine to
provide the DNS service to Alice. In the program
we created a simulated poisoned entry which
specified the IP address for
sophos.itservices.ubc.ca as being Eve's [P
address. So when Alice requests an update from
Sophos server, a DNS query will first be sent to
the DNS server to resolve the Sophos server
hostname to an IP address. The local DNS server
will then respond with the poisoned DNS entry by
giving the IP address of Eve instead of the IP
address for the Sophos server.

At this point, Alice will again proceed to make
her HTTP request for master.upd. In order to
mimic the Sophos server, we had the Cherokee
Web Server running on Eve to respond to HTTP
requests. We then hosted an out of date

http://www.jhsoft.com/

master.upd in the appropriate directory (which is
known to be ESXP/master.upd by packet sniffing
with Wireshark). When Alice requests
master.upd, Eve will simply respond through a
standard HTTP response with the out of date file
which appears to be valid. As such, Alice has
once again been spoofed into thinking she is up to
date.

[11. DISCUSSION
A. Feasibility of the Attacks
In order to prove that Sophos update is
insecure, we must also discuss the feasibility of
such attacks being used in a non-controlled
environment.

MitM attacks have been a consistent problem
for the security field. With the current Sophos
update implementation, the attack itself is trivial.
Furthermore, there are many circumstances in
which a MitM attack would be quite
straightforward. One example of this is attackers
setting up their own wireless access points. From
there it is a simple matter to alter and listen to the
packets as desired.

The packet injection attack is perhaps more
worrisome because it can be implemented by any
member of the network that can sniff the packets
between the clients and the server. In order for the
attack to be successful, the only requirement is
that the delay between the client and attacker
must be smaller than the delay between the client
and server. Furthermore, if a denial of service
attack was mounted against the Sophos update
server, the chance of success would rise
significantly.

The wvulnerability of clients to a DNS
poisoning attack is twofold. Firstly, the DNS
server cache is only as secure as the the software
running on the server, so on a less secure DNS
server it may be possible to directly alter the
server's DNS records. This would produce results
similar to the DNS attack carried out in the
analysis portion of this report. The second
vulnerability lies in the DNS protocol itself. Like
the packet injection attack, Eve could listen for
the DNS requests for the IP address of the Sophos
server, and then spoof DNS responses. This is
possible because DNS uses UDP, uses predictable
algorithms and has no authentication. In this case,

only the local DNS caches on the hosts would be
poisoned, but the end result would be the same.

B. Implications

The fact that Sophos update is so insecure
could potentially have drastic effects on the
networks that utilize them as the major anti-virus
tool. Without access to updates, end systems may
have vulnerabilities to malware. Because of this,
new malware could spread and flourish in a
network where updates were unavailable, and
could remain undetected for a much longer
amount of time. At that point the assets at risk is
the usability and data stored on any end system
blocked from receiving updates. This
vulnerability is probably due to a the Sophos
update designers not properly questioning their
assumptions of the system. If they didn't consider
that there may be computers on the network that
actively want to deny updates, then there is no
reason to have the system run any differently than
it does today.

None of these attacks would be possible if
Sophos wupdate server set up a properly
authenticated and encrypted channel. As it stands
however, the systems protected by Sophos are
vulnerable to being denied updates.

C. Future Work

There are several different directions for future
work on this topic. The first of these is to work on
a scheme to secure this connection from the
previously mentioned attacks. This could possibly
include server authentication, time-stamping,
and/or channel encryption. This would essentially
increase the overall amount of defense in depth as
per the principles of designing secure systems.
However, depending on the solution it may
require additional infrastructure and code, such as
key distribution methods, which would slow
down the overall updating process.

The second direction for future work could
focus on providing corrupted data during the
Sophos update process. This may be a trivial
matter in the DNS poisoning attack and the MitM
attacks, but may be considerably more difficult
for the packet injection attack.

REFERENCES

[1] Microsoft, “Windows Update Explained,” September
2008. [Online] Available:
http://www.scribd.com/doc/6331827/Windows-Update-
Explained [Accessed Nov. 10, 2008].

[2] A. Bellissimo, J. Burgess, and K. Fu, “Secure Software
Updates: Disappointments and New Challenges”,
USENIX Hot Topics in Security Workshop, July 2006.

[3] T. Olzak, “DNS Cache Poisoning: Definition and
Prevention,” unpublished.

