

Symmetric Crypto Systems

EECE 412

Copyright © 2004-2012 Konstantin Beznosov

Module Outline

- Stream ciphers "under the hood"
- Block ciphers "under the hood"
- Modes of operation for block ciphers

learning objectives

- explain main properties of block and stream ciphers,
- match a cipher type and mode of operation to the system at hand,
- explain how ECB, CBC, OFB, and CTR modes of operation work and draw diagrams showing that,
- given a mode of operation, identify its advantages and shortcomings.

Stream Ciphers

Random Generator (Stream Cipher)

as Random Oracle

- In:
 - short string (key)
 - length of the output

- Out: long random stream of bits (keystream)
- Applications:
 - Communications encryption
 - Storage encryption

Properties

- Should not reuse
 - Use seed

Stream Ciphers

- Not as popular today as block ciphers
- A5/I
 - Designed for hardware implementations
 - Based on shift registers
 - Used in GSM mobile phone system
- RC4
 - Designed for software implementations
 - Based on a changing lookup table
 - Used many places

A5/1

- A5/I consists of 3 shift registers
 - X: 19 bits $(x_0,x_1,x_2,...,x_{18})$
 - Y: 22 bits $(y_0, y_1, y_2, ..., y_{21})$
 - Z: 23 bits $(z_0,z_1,z_2,...,z_{22})$

A5/1

- At each step: $m = maj(x_8, y_{10}, z_{10})$
 - Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
- If $x_8 = m$ then X steps

•
$$t = x_{13} \oplus x_{16} \oplus x_{17} \oplus x_{18}$$

- $x_i = x_{i-1}$ for i = 18, 17, ..., 1 and $x_0 = t$
- If $y_{10} = m$ then Y steps
 - $t = y_{20} \oplus y_{21}$
 - $y_i = y_{i-1}$ for i = 21,20,...,1 and $y_0 = t$
- If $z_{10} = m$ then Z steps
 - $t = \mathbf{z}_7 \oplus \mathbf{z}_{20} \oplus \mathbf{z}_{21} \oplus \mathbf{z}_{22}$
 - $z_i = z_{i-1}$ for i = 22,21,...,1 and $z_0 = t$
- Keystream bit is $x_{18} \oplus y_{21} \oplus z_{22}$

A5/I

- Each value is a single bit
- Key is used as initial fill of registers
- Each register steps or not, based on (x_8, y_{10}, z_{10})
- Keystream bit is XOR of right bits of registers

A5/1: example

- In this example, $m = \text{maj}(x_8, y_{10}, z_{10}) = \text{maj}(1,0,1) = 1$
- Register X steps, Y does not step, and Z steps
- Keystream bit is XOR of right bits of registers
- Here, keystream bit will be $0 \oplus 1 \oplus 0 = 1$

Use of Stream Ciphers

- Stream ciphers were big in the past
 - Efficient in hardware
 - Speed needed to keep up with voice, etc.
- Today, processors are fast, so software-based crypto is fast enough

Block Ciphers "Under the Hood"

Random Permutation (Block Cipher)

as Random Oracle

• In

fixed size short string (plaintext) M,

• DES -- 64 bits

Key K

- Out
 - same fixed size short string (ciphertext) C

Notation

- C = { M }_K
- M = { C }_K

Properties

Invertible

Related Notes

- Main properties of block ciphers
 - invertible
 - confusing
 - diffusing
- Main block ciphers
 - Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES) a.k.a.,
 Rijndael

(Iterated) Block Cipher

- Plaintext and ciphertext consists of fixed sized blocks
- Ciphertext obtained from plaintext by iterating a round function
- Input to round function consists of key and the output of previous round
- Usually implemented in software

Feistel Cipher

- type of block cipher design, not a specific cipher
- Split plaintext block into left and right halves: Plaintext = (L_0,R_0)
- For each round i=1,2,...,n, compute

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

where F is round function and K_i is subkey

• Ciphertext = (L_n, R_n)

Feistel Cipher

- Decryption: Ciphertext = (L_n, R_n)
- For each round i=n,n−1,...,1, compute

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus F(R_{i-1},K_i)$$

where F is round function and K_i is subkey

- Plaintext = (L_0, R_0)
- Formula "works" for any function F
- But only secure for certain functions F
 - silly round function example: F(x, y) == 0 for any x and y.

Advanced Encryption Standard

- Replacement for DES
- AES competition (late 90's)
 - NSA openly involved
 - Transparent process
 - Many strong algorithms proposed
 - Rijndael Algorithm ultimately selected
 - Pronounced like "Rain Doll" or "Rhine Doll"
 - invented by Joan Daemen and Vincent Rijmen
- Iterated block cipher (like DES)

AES Overview

- Block size: 128 bits (Rijndael had also 192 or 256)
- Key length: 128, 192 or 256 bits (independent of block size)
- I0 to I4 rounds (depends on key length)
- Each round uses 4 functions (in 3 "layers")
 - ByteSub (nonlinear layer)
 - ShiftRow (linear mixing layer)
 - MixColumn (nonlinear layer)
 - AddRoundKey (key addition layer)

AES demonstration

review questions

- in A5/1, how is the keystream bit is used after its been obtained (after all it's only a single bit)?
- how would you define "confusion" and "diffusion" in the context of ciphers?
 - confusion -- obscuring the relationship between the plaintext and ciphertext
 - diffusion -- spreading the plaintext statistics through the ciphertext

Modes of Operation

Code book

Literally, a book filled with "codewords"

rebruar	13603
fest	13732
finanzielle	13850
folgender	13918
Frieden	17142

12405

Friedenschluss 17149

Modern block ciphers are code books!

Electronic Code Book (ECB)

$$M = m_1 \mid m_2 \mid \dots \mid m_n$$

$$m_1 \quad m_2 \quad \dots \quad m_n$$

$$E \quad E \quad \dots \quad E$$

$$c_1 \quad c_2 \quad \dots \quad c_n$$

$$c_i = E_K(m_i)$$
 $C = c_1 | c_2 | ... | c_n$

Drawbacks

- Same message has same ciphertext
- Redundant/repetitive patterns will show through
- Subject to "cut-and-splice" attacks

Alice in ECB Mode

Cipher Block Chaining (CBC)

$$c_i = E_K(m_i \oplus c_{i-1})$$

$$M = m_1 | m_2 | ... | m_n$$

$$C = IV \mid c_1 \mid c_2 \mid \dots \mid c_n$$

Decrypting with CBC: $m_i = D_K(c_i) \oplus c_{i-1}$

Drawback: cannot precompute ci without ci-1

Alice in ECB Mode

Alice in CBC Mode

Output Feedback (OFB) Mode

- $K_0 = IV, K_1 = E_K(IV), K_2 = E_K(K_1), ... K_i = E_K(K_{i-1}) ...$
- $C_i = m_i \oplus K_i$
 - draw OFB diagram, similar to the one for CBC
 - Purpose
 - use block cipher as a stream cipher
 - Drawback
 - K₁, ... K_i must be kept in memory

TLS example

- CipherSuite TLS_RSA_WITH_AES_256_CBC_SHA = $\{0x00, 0x35\}$;
- CipherSuite TLS_DH_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x37 };

Counter Mode (CTR)

- Drawbacks of feedback modes
 - Hard to parallelize
 - CBC -- cannot pre-compute
 - OFB -- memory requirements
- Counter Encryption is easier to parallelize
 - $c_i = m_i \oplus E_K(IV+i)$
 - draw CTR diagram for decryption
 - $m_i = c_i \oplus E_K(IV+i)$

IPSec example

Case #3: Encrypting 48 bytes (3 blocks) using AES-CBC with 128-bit key

Key : 0x6c3ea0477630ce21a2ce334aa746c2cd

IV : 0xc782dc4c098c66cbd9cd27d825682c81

Plaintext: "This is a 48-byte message (exactly 3 AES blocks)"

Ciphertext: 0xd0a02b3836451753d493665d33f0e886

2dea54cdb293abc7506939276772f8d5

021c19216bad525c8579695d83ba2684

message authentication code (MAC)

- Purpose
 - protect message integrity and authenticity
- How to do MAC with a block cipher?

In CBC mode, the last block of cipher text serves as the MAC for the entire message

Hash Function from a Block Cipher

h = H(M)

- Easy to compute h from M efficient
- Hard to compute M from h one way
- For given M, hard to find another M' s.t. H(M) == H(M') weak collision resistance 3.
- Hard to find any M & M' s.t. H(M) == H(M') strong collision resistance

37

Common Hash Functions and Applications

- Common hash functions
 - (Message Digest) MD5 value 128b
 - (Secure Hash Algorithm)
 SHA-1 180b value,
 SHA-256, SHA-512
- Applications
 - MACs
 - $MAC_K(M) = H(K,M)$
 - HMAC_K(M) = H(K \oplus A, H(K \oplus B,M)), A & B = magic (Section 5.7, Stamp)

- Time stamping service
- key updating
 - $K_i = H(K_{i-1})$
 - Backward security
- Autokeying
 - $K_{i+1} = H(K_i, M_{i1}, M_{i2}, ...)$
 - Forward security

Key Points

- Ciphers are either substitution, transposition (a.k.a., permutation), or product
- Any block cipher should confuse and defuse
- Block ciphers are implemented in SP-networks
- Stream ciphers and hash functions are commonly implemented with block ciphers
- Hash functions used for
 - fingerprinting data, MAC, key updating, autokeying
 - Backward & forward security properties

learning objectives

- explain main properties of block and stream ciphers,
- match a cipher type and mode of operation to the system at hand,
- explain how ECB, CBC, OFB, and CTR modes of operation work and draw diagrams showing that,
- given a mode of operation, identify its advantages and shortcomings,
- explain how MAC can be implemented and how it's different from just hash and from a cipher,
- explain backward and forward security and how they can be achieved.