

Public Key Cryptography

EECE 412

What is it?

Two keys

Sender uses recipient's **public key** to encrypt

Receiver uses his private key to decrypt

Based on trap door, one way function

Easy to compute in one direction

Hard to compute in other direction

"Trap door" used to create keys

Example: Given p and q, product N=pq is easy to compute, but given N, it is hard to find p and q

How is it used?

Encryption

Suppose we encrypt M with Bob's public key

Only Bob's private key can decrypt to find M

Digital Signature

Sign by "encrypting" with private key

Anyone can **verify** signature by "decrypting" with public key

But only private key holder could have signed

Like a handwritten signature

Topic Outline

The Random Oracle model for Public Key Cryptosystems

Public key encryption and trapdoor oneway permutations

Digital signatures

Looking under the hood

Knapsack

RSA

Uses of Public Crypto

The order of sign and encrypt

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

Public Key Encryption Scheme:

Key pair (KR, KR⁻¹) generation function from random string R

 $KR \rightarrow KR^{-1}$ is infeasible

•
$$C = \{M\}_{KR}$$

$$M = \{C\}_{KR}^{-1}$$

Oueries

Responses

In:

fixed size short string (plaintext) M,

Key KR

Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

Public Key Signature Scheme:

Key pair $(\sigma R, VR)$ generation function

 $VR \rightarrow \sigma R$ is infeasible

$$S = Sig_{\sigma R}(M)$$

 ${True, False} = Ver_{VR}(S)$

Responses

	Signing	Verifying
Input	Any string $M + \sigma R$	S + VR
Output	S = hash(M) cipher block	"True" or "False"

Looking Under the Hood

Knapsack Cryptosystem 12 Kg

Knapsack Problem

Given a set of n weights $W_0,W_1,...,W_{n-1}$ and a sum S, is it possible to find $a_i \in \{0,1\}$ so that

$$S = a_0 W_0 + a_1 W_1 + ... + a_{n-1} W_{n-1}$$

(technically, this is "subset sum" problem)

Example

Weights (62,93,26,52,166,48,91,141)

Problem: Find subset that sums to S=302

Answer: 62+26+166+48=302

The (general) knapsack is NP-complete

Knapsack Problem

General knapsack (GK) is hard to solve

But super-increasing knapsack (SIK) is easy

SIK: each weight greater than the sum of all previous weights

SIK Example

Weights (2,3,7,14,30,57,120,251)

Problem: Find subset that sums to S=186

Work from largest to smallest weight

Answer: 120+57+7+2=186

Knapsack Cryptosystem

- 1. Generate super-increasing knapsack (SIK)
- 2. Convert SIK into "general" knapsack (GK)
- 3. Public Key: GK
- 4. Private Key: SIK plus conversion factors

- Easy to encrypt with GK
- With private key, easy to decrypt (convert ciphertext to SIK)
- Without private key, must solve GK (???)

Knapsack Cryptosystem

- Let (2,3,7,14,30,57,120,251) be the SIK
- Choose m = 41 and n = 491 with m, n relatively prime and n greater than sum of elements of SIK
- General knapsack

```
(2 \cdot 41) \mod 491 = 82
3 \cdot 41 \mod 491 = 123
7 \cdot 41 \mod 491 = 287
14 \cdot 41 \mod 491 = 83
30 \cdot 41 \mod 491 = 248
57 \cdot 41 \mod 491 = 373
120 \cdot 41 \mod 491 = 10
251 \cdot 41 \mod 491 = 471
```

General knapsack: (82,123,287,83,248,373,10,471)

Knapsack Example

Private key: (2,3,7,14,30,57,120,251), n = 491, $m^{-1}=12$

- $m^{-1} \mod n = 41^{-1} \mod 491 = 12$
- $(x^{-1} x) \bmod n = 1 \bmod n$

Public key: (82,123,287,83,248,373,10,471)

Throw away: m = 41

Example: Encrypt 150 = 10010110

$$82 + 83 + 373 + 10 = 548 = C$$

To decrypt,

(C m⁻¹) mod n = $(548 \cdot 12)$ mod 491 = 193 mod 491

Solve (easy) SIK with S = 193

Obtain plaintext 10010110 = 150

Knapsack Weakness

Trapdoor: Convert SIK into "general" knapsack using modular arithmetic

One-way: General knapsack easy to encrypt, hard to solve; SIK easy to solve

This knapsack cryptosystem is **insecure**

Broken by Shamir in 1983 with Apple II computer

The attack uses lattice reduction

"General knapsack" is not general enough!

This special knapsack is easy to solve!

RSA

Cocks (GCHQ), independently, by

Rivest, Shamir and Adleman (MIT)

Rivest, Shamir, and Adleman

basics

Let p and q be two large (e.g., 200 digits) prime numbers use probabilistic primality tests to find p & q quickly

Let $n = p \times q$ be the modulus

Factoring n is supposed to be hard (i.e., billions of years)

e relatively prime to (p-1)(q-1) -- encryption exponent $d = e^{-1} \mod (p-1)(q-1)$ -- decryption exponent

Throw Away: p, q

• Public key: (n, e)

Private key: d

Notation: public is in cyan, secret is in red

encrypting & decrypting

To encrypt message M compute

• $C = M^e \mod n$ -- fast with modular exponentiation

To decrypt C compute

• $M = C^d \mod n$

Recall that e and n are public

If attacker can factor n, he can use e to easily find d since $ed = 1 \mod (p-1)(q-1)$

Factoring the modulus breaks RSA

It is not known whether factoring is the only way to break RSA

RSA in the works

simple RSA example: initialization

Select "large" primes p = 43, q = 59

Then $n = p \times q = 2537$ and (p-1)(q-1) = 2436

Choose e = 13 (relatively prime to 2436)

Find d such that $ed = 1 \mod (p-1)(q-1)$, we find that d = 937 works

note: d exists because gcd(e, (p-1)(q-1)) = 1

Public key: (N, e) = (2537, 13)

Private key: d = 937

simple RSA example: encryption

```
plain text: M = "STOP" = (18 19, 14 15)

ciphertext: C = Me mod n =
(1819<sup>13</sup> mod 2537, 1415<sup>13</sup> mod 2537) =
20 81 21 82 = "UDVE"

fast modular exponentiation
```

simple RSA example: decryption

ed = 1 mod $(p-1)(q-1) \Rightarrow \exists k \text{ s.t. ed} = k(p-1)(q-1)+1$

 $C^{d} \equiv (M^{e})^{d} = M^{de} = M^{1+k(p-1)(q-1)} \pmod{n}$

 $M^{p-1} \equiv 1 \mod p$ and $M^{q-1} \equiv 1 \mod q$ by Fermat's Little Theorem:

If *p* is prime and *a* is an integer not divisible by *p*, then $a^{p-1} \equiv 1 \mod p$. Furthermore $a^p \equiv a \mod p$

 $C^d \equiv M \times ((M^{p-1})^{k(q-1)}) \mod p \equiv M \times 1 \mod p \equiv M \mod p$

 $C^d \equiv M \times ((M^{q-1})^{k(p-1)}) \mod p \equiv M \times 1 \mod p \equiv M \mod q$

Because gcd(p,q) = 1, $C^d \equiv M \mod p \times q$ by Chinese Remainder Theorem

22

simple RSA example: decryption

Decrypt message 0981 0461

 $M \equiv C^d \mod p \times q$

 $0981^{937} \mod 2537 = 0704 = "HE"$

 $0461^{937} \mod 2537 = 1115 = \text{"LP"}$

HELP

Uses for Public Key Crypto

Uses for Public Key Crypto

Confidentiality

Transmitting data over insecure channel

Secure storage on insecure media

Authentication

Digital signature provides integrity and **non-repudiation**

No non-repudiation with symmetric keys

Non-non-repudiation

Alice orders 100 shares of stock from Bob Alice computes MAC using symmetric key Stock drops, Alice claims she did not order

Can Bob prove that Alice placed the order?

No! Since Bob also knows symmetric key, he could have forged message

Problem: Bob knows Alice placed the order, but he can't prove it

Non-repudiation

Alice orders 100 shares of stock from Bob

Alice **signs** order with her private key

Stock drops, Alice claims she did not order

Can Bob prove that Alice placed the order?

Yes! Only someone with Alice's private key could have signed the order

This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt vs Encrypt and Sign

Public Key Notation

Sign message M with Alice's private key:

[M]_{Alice}

Encrypt message M with Alice's public

key: {M}_{Alice}

Then

$$\{[M]_{Alice}\}_{Alice} = M$$

$$[\{M\}_{Alice}]_{Alice} = M$$

Confidentiality and Non-repudiation

Suppose that we want confidentiality and non-repudiation

Can public key crypto achieve both?

Alice sends message to Bob

- Sign and encrypt $\{[M]_{Alice}\}_{Bob}$
- Encrypt and sign $[\{M\}_{Bob}]_{Alice}$

Can the order possibly matter? (see Stamp)

Sign and Encrypt

M = "I love you"

Q: What is the problem?

A: Charlie misunderstands crypto!

Encrypt and Sign

M = "My theory, which is mine, is this:

 $[\{M\}_{Bob}]_{Alice}$

Charlie

Bob

Note that Charlie cannot decrypt M Q: What is the problem?

A: Bob misunderstands crypto!

Summary

The Random Oracle model for Public Key Cryptosystems

Public key encryption and trapdoor one-way permutations

Digital signatures

Looking under the hood

Knapsack

RSA

Uses of Public Crypto

The order of sign and encrypt