Public Key Cryptography

EECE 412
What is it?

Two keys

Sender uses recipient’s public key to encrypt
Receiver uses his private key to decrypt

Based on trap door, one way function

Easy to compute in one direction
Hard to compute in other direction

“Trap door” used to create keys

Example: Given p and q, product N=pq is easy to compute, but given N, it is hard to find p and q
How is it used?

Encryption

Suppose we encrypt M with Bob’s public key

Only Bob’s private key can decrypt to find M

Digital Signature

- **Sign** by “encrypting” with private key

 Anyone can **verify** signature by “decrypting” with public key

 But only private key holder could have signed

Like a handwritten signature
Topic Outline

The Random Oracle model for Public Key Cryptosystems

Public key encryption and trapdoor one-way permutations

Digital signatures

Looking under the hood

Knapsack

RSA

Uses of Public Crypto

The order of sign and encrypt
Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

Public Key Encryption Scheme:

- Key pair \((KR, KR^{-1})\) generation function from random string \(R\)

 \(KR \rightarrow KR^{-1}\) is infeasible

- \(C = \{M\}_{KR}\)

- \(M = \{C\}_{KR^{-1}}\)

In:

- fixed size short string (plaintext) \(M\),
- Key \(KR\)

Out: fixed size short string (ciphertext) \(C\)
Digital Signature as Random Oracle

Public Key Signature Scheme:

Key pair \((\sigma_R, VR)\) generation function

VR \rightarrow \sigma_R is infeasible

\[S = \text{Sig}_{\sigma_R}(M) \]

\{True, False\} = \text{Ver}_{VR}(S)

<table>
<thead>
<tr>
<th>Signing</th>
<th>Verifying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>Any string (M + \sigma_R)</td>
<td>(S = \text{hash}(M)</td>
</tr>
</tbody>
</table>
Looking Under the Hood
Knapsack Cryptosystem
Knapsack Problem

Given a set of \(n \) weights \(W_0, W_1, \ldots, W_{n-1} \) and a sum \(S \), is it possible to find \(a_i \in \{0,1\} \) so that

\[
S = a_0 W_0 + a_1 W_1 + \ldots + a_{n-1} W_{n-1}
\]

(technically, this is “subset sum” problem)

Example

Weights (62, 93, 26, 52, 166, 48, 91, 141)

Problem: Find subset that sums to \(S=302 \)

Answer: 62 + 26 + 166 + 48 = 302

The (general) knapsack is NP-complete
Knapsack Problem

General knapsack (GK) is hard to solve

But super-increasing knapsack (SIK) is easy

SIK: each weight greater than the sum of all previous weights

- **SIK Example**

 Weights (2, 3, 7, 14, 30, 57, 120, 251)

 Problem: Find subset that sums to S=186

 Work from largest to smallest weight

 Answer: 120 + 57 + 7 + 2 = 186
Knapsack Cryptosystem

1. Generate super-increasing knapsack (SIK)
2. Convert SIK into “general” knapsack (GK)
3. **Public Key:** GK
4. **Private Key:** SIK plus conversion factors

- Easy to encrypt with GK
- With private key, easy to decrypt (convert ciphertext to SIK)
- Without private key, must solve GK (???)
Let \((2, 3, 7, 14, 30, 57, 120, 251)\) be the SIK

Choose \(m = 41\) and \(n = 491\) with \(m, n\) relatively prime and \(n\) greater than sum of elements of SIK

General knapsack

\[
\begin{align*}
(2 \cdot 41) \mod 491 &= 82 \\
3 \cdot 41 \mod 491 &= 123 \\
7 \cdot 41 \mod 491 &= 287 \\
14 \cdot 41 \mod 491 &= 83 \\
30 \cdot 41 \mod 491 &= 248 \\
57 \cdot 41 \mod 491 &= 373 \\
120 \cdot 41 \mod 491 &= 10 \\
251 \cdot 41 \mod 491 &= 471
\end{align*}
\]

General knapsack: \((82, 123, 287, 83, 248, 373, 10, 471)\)
Knapsack Example

Private key: \((2, 3, 7, 14, 30, 57, 120, 251), n = 491, m^{-1} = 12 \)

- \(m^{-1} \mod n = 41^{-1} \mod 491 = 12 \)
- \((x^{-1} x) \mod n = 1 \mod n \)

Public key: \((82, 123, 287, 83, 248, 373, 10, 471) \)

Throw away: \(m = 41 \)

Example: Encrypt \(150 = 10010110 \)

\[82 + 83 + 373 + 10 = 548 = C \]

To decrypt,

\[(C \cdot m^{-1}) \mod n = (548 \cdot 12) \mod 491 = 193 \mod 491 \]

Solve (easy) SlK with \(S = 193 \)

Obtain plaintext \(10010110 = 150 \)
Knapsack Weakness

Trapdoor: Convert SIK into “general” knapsack using modular arithmetic

One-way: General knapsack easy to encrypt, hard to solve; SIK easy to solve

This knapsack cryptosystem is insecure

- Broken by Shamir in 1983 with Apple II computer
 The attack uses lattice reduction

“General knapsack” is not general enough!
This special knapsack is easy to solve!
RSA

Cocks (GCHQ), independently, by Rivest, Shamir and Adleman (MIT)
Rivest, Shamir, and Adleman

1978

2003
Let p and q be two large (e.g., 200 digits) prime numbers

use probabilistic primality tests to find p & q quickly

Let $n = p \times q$ be the modulus

Factoring n is supposed to be hard (i.e., billions of years)

e relatively prime to $(p-1)(q-1)$ -- encryption exponent

d = e^{-1} \bmod (p-1)(q-1) -- decryption exponent

Throw Away: p, q

Public key: (n, e)

Private key: d

Notation: public is in cyan, secret is in red
encrypting & decrypting

To encrypt message M compute

- $C = M^e \mod n$ -- fast with modular exponentiation

To decrypt C compute

- $M = C^d \mod n$

Recall that e and n are public

If attacker can factor n, he can use e to easily find d since $ed = 1 \mod (p-1)(q-1)$

Factoring the modulus breaks RSA

It is not known whether factoring is the only way to break RSA
RSA in the works
simple RSA example: initialization

Select “large” primes $p = 43$, $q = 59$

Then $n = p \times q = 2537$ and $(p-1)(q-1) = 2436$

Choose $e = 13$ (relatively prime to 2436)

Find d such that $ed = 1 \mod (p-1)(q-1)$, we find that $d = 937$ works

note: d exists because $\gcd(e, (p-1)(q-1)) = 1$

Public key: $(N, e) = (2537, 13)$

Private key: $d = 937$
simple RSA example: encryption

plain text: \(M = "\text{STOP}" = (18, 19, 14, 15) \)

ciphertext: \(C = M^e \mod n = (18^{13} \mod 2537, 14^{13} \mod 2537) = 20, 81, 21, 82 = "\text{UDVE}" \)

fast modular exponentiation
simple RSA example: decryption

\[ed = 1 \mod (p-1)(q-1) \Rightarrow \exists \ k \ s.t. \ ed = k(p-1)(q-1)+1 \]

\[C^d \equiv (M^e)^d = M^{de} = M^{1+ k(p-1)(q-1)} \mod n \]

\[M^{p-1} \equiv 1 \mod p \text{ and } M^{q-1} \equiv 1 \mod q \]

by Fermat’s Little Theorem:

If \(p \) is prime and \(a \) is an integer not divisible by \(p \),
then \(a^{p-1} \equiv 1 \mod p \). Furthermore \(a^p \equiv a \mod p \)

\[C^d \equiv M \times ((M^{p-1})^{k(q-1)}) \mod p \equiv M \times 1 \mod p \equiv M \mod p \]

\[C^d \equiv M \times ((M^{q-1})^{k(p-1)}) \mod p \equiv M \times 1 \mod p \equiv M \mod q \]

Because \(\gcd(p,q) = 1 \), \(C^d \equiv M \mod p \times q \) by Chinese Remainder Theorem
simple RSA example: decryption

Decrypt message 0981 0461
M ≡ C^d \text{ mod } p\times q
0981^{937} \text{ mod } 2537 = 0704 = “HE”
0461^{937} \text{ mod } 2537 = 1115 = “LP”
HELP
Uses for Public Key Crypto
Uses for Public Key Crypto

Confidentiality
- Transmitting data over insecure channel
- Secure storage on insecure media

Authentication
- Digital signature provides integrity and **non-repudiation**
- No non-repudiation with symmetric keys
Non-non-repudiation

Alice orders 100 shares of stock from Bob

Alice computes MAC using symmetric key

Stock drops, Alice claims she did not order

Can Bob prove that Alice placed the order?

No! Since Bob also knows symmetric key, he could have forged message

Problem: Bob knows Alice placed the order, but he can’t prove it
Non-repudiation

Alice orders 100 shares of stock from Bob
Alice **signs** order with her private key
Stock drops, Alice claims she did not order
Can Bob prove that Alice placed the order?
Yes! Only someone with Alice’s private key could have signed the order
This assumes Alice’s private key is not stolen (revocation problem)
Sign and Encrypt
vs
Encrypt and Sign
Public Key Notation

Sign message M with Alice’s private key: $[M]_{Alice}$

Encrypt message M with Alice’s public key: ${M}$

Then

$\{[M]_{Alice}\}_{Alice} = M$

$\{\{M\}\}_{Alice} = M$
Confidentiality and Non-repudiation

Suppose that we want confidentiality and non-repudiation

Can public key crypto achieve both?

Alice sends message to Bob

- **Sign and encrypt** $\{[M]_{Alice}\}_{Bob}$
- **Encrypt and sign** $\{[M]_{Bob}\}_{Alice}$

Can the order possibly matter? (see Stamp)
Sign and Encrypt

M = “I love you”

Q: What is the problem?
A: Charlie misunderstands crypto!
Encrypt and Sign

\[M = "My theory, which is mine, is this: \ldots" \]

Note that Charlie cannot decrypt \(M \)

Q: What is the problem?
A: Bob misunderstands crypto!
Summary

The Random Oracle model for Public Key Cryptosystems

Public key encryption and trapdoor one-way permutations

Digital signatures

Looking under the hood

Knapsack

RSA

Uses of Public Crypto

The order of sign and encrypt