
T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Public Key Cryptography
EECE 412

1 EECE_412-05-public_crypto.key - October 2, 2014

• Two keys	

• Sender uses recipient’s public key to encrypt	

• Receiver uses his private key to decrypt	

• Based on trap door, one way function
• Easy to compute in one direction	

• Hard to compute in other direction	

• “Trap door” used to create keys	

• Example: Given p and q, product N=pq is easy to
compute, but given N, it is hard to find p and q

What is it?

2 EECE_412-05-public_crypto.key - October 2, 2014

• Encryption	

• Suppose we encrypt M with Bob’s public key	

• Only Bob’s private key can decrypt to find M	

• Digital Signature	

• Sign by “encrypting” with private key	

• Anyone can verify signature by “decrypting” with
public key	

• But only private key holder could have signed	

• Like a handwritten signature

How is it used?

3 EECE_412-05-public_crypto.key - October 2, 2014

• The Random Oracle model for Public Key
Cryptosystems	

• Public key encryption and trapdoor one-
way permutations	

• Digital signatures	

• Looking under the hood	

• Knapsack	

• RSA	

• Uses of Public Crypto	

• The order of sign and encrypt

Topic Outline

4 EECE_412-05-public_crypto.key - October 2, 2014

• Public Key Encryption Scheme:	

• Key pair (KR, KR-1) generation  
function from random string R	

• KR → KR-1 is infeasible 	

• C = {M} KR	

• M = {C} KR
-1	

!
!

• In: 	

• fixed size short string (plaintext) M,	

• Key KR	

• Out: fixed size short string (ciphertext) C

Queries

Responses

H(K1) K1

H(K2) K2

Public Key Encryption and
Trap-door One-Way Permutation as Random Oracle

5 EECE_412-05-public_crypto.key - October 2, 2014

• Public Key Signature Scheme:	

• Key pair (σR, VR) generation function	

• VR → σR is infeasible 	

• S = Sig σR(M)	

• {True, False} = VerVR(S)

Queries

Responses

H(K1) K1

H(K2) K2

Signing Verifying

Input Any string M + σR S + VR

Output S = hash(M) | cipher block “True” or “False”

Digital Signature as Random Oracle

6 EECE_412-05-public_crypto.key - October 2, 2014

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Looking Under the Hood

7 EECE_412-05-public_crypto.key - October 2, 2014

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Knapsack Cryptosystem

8 EECE_412-05-public_crypto.key - October 2, 2014

• Given a set of n weights W0,W1,...,Wn-1 and a sum S, is it
possible to find ai ∈ {0,1} so that	

	
 S = a0W0+a1W1 +...+ an-1Wn-1	

	
 (technically, this is “subset sum” problem)	

• Example 	

• Weights (62,93,26,52,166,48,91,141)	

• Problem: Find subset that sums to S=302	

• Answer: 62+26+166+48=302	

• The (general) knapsack is NP-complete

Knapsack Problem

9 EECE_412-05-public_crypto.key - October 2, 2014

• General knapsack (GK) is hard to solve	

• But super-increasing knapsack (SIK) is easy	

• SIK: each weight greater than the sum of all previous
weights	

• SIK Example

• Weights (2,3,7,14,30,57,120,251) 	

• Problem: Find subset that sums to S=186	

• Work from largest to smallest weight 	

• Answer: 120+57+7+2=186

Knapsack Problem

10 EECE_412-05-public_crypto.key - October 2, 2014

1. Generate super-increasing knapsack (SIK)	

2. Convert SIK into “general” knapsack (GK)	

3. Public Key: GK	

4. Private Key: SIK plus conversion factors

§ Easy to encrypt with GK
§ With private key, easy to decrypt (convert

ciphertext to SIK)
§ Without private key, must solve GK (???)

Knapsack Cryptosystem

11 EECE_412-05-public_crypto.key - October 2, 2014

§ Let (2,3,7,14,30,57,120,251) be the SIK	

§ Choose m = 41 and n = 491 with m, n relatively prime and n
greater than sum of elements of SIK	

§ General knapsack	

	
 	
 (2 ⋅ 41) mod 491 = 82	

	
 	
 3 ⋅ 41 mod 491 = 123	

	
 	
 7 ⋅ 41 mod 491 = 287	

	
 	
 14 ⋅ 41 mod 491 = 83	

 30 ⋅ 41 mod 491 = 248	

 57 ⋅ 41 mod 491 = 373	

	
 	
 120 ⋅ 41 mod 491 = 10	

	
 	
 251 ⋅ 41 mod 491 = 471 	

§ General knapsack: (82,123,287,83,248,373,10,471)

Knapsack Cryptosystem

12 EECE_412-05-public_crypto.key - October 2, 2014

• Private key: (2,3,7,14,30,57,120,251), n = 491, m-1=12	

• m−1 mod n = 41−1 mod 491 = 12	

• (x−1 x) mod n = 1 mod n	

• Public key: (82,123,287,83,248,373,10,471)	

• Throw away: m = 41	

• Example: Encrypt 150 = 10010110 	

	
 82 + 83 + 373 + 10 = 548 = C	

• To decrypt,	

• (C m−1) mod n = (548 · 12) mod 491 = 193 mod 491	

• Solve (easy) SIK with S = 193	

• Obtain plaintext 10010110 = 150

Knapsack Example

13 EECE_412-05-public_crypto.key - October 2, 2014

• Trapdoor: Convert SIK into “general” knapsack
using modular arithmetic	

• One-way: General knapsack easy to encrypt, hard
to solve; SIK easy to solve	

• This knapsack cryptosystem is insecure
• Broken by Shamir in 1983 with Apple II computer	

• The attack uses lattice reduction

• “General knapsack” is not general enough!	

• This special knapsack is easy to solve!

Knapsack Weakness

14 EECE_412-05-public_crypto.key - October 2, 2014

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

RSA
Cocks (GCHQ), independently, by 	

Rivest, Shamir and Adleman (MIT)	

!

15 EECE_412-05-public_crypto.key - October 2, 2014

Rivest, Shamir, and Adleman

2003

1978

16 EECE_412-05-public_crypto.key - October 2, 2014

• Let p and q be two large (e.g., 200 digits) prime numbers	

• use probabilistic primality tests to find p & q quickly	

• Let n = p×q be the modulus

• Factoring n is supposed to be hard (i.e., billions of
years)

• e relatively prime to (p-1)(q-1) -- encryption exponent	

• d = e-1 mod (p-1)(q-1) -- decryption exponent	

• Throw Away: p, q	

• Public key: (n, e)	

• Private key: d	

• Notation: public is in cyan, secret is in red

basics

17 EECE_412-05-public_crypto.key - October 2, 2014

• To encrypt message M compute	

• C = Me mod n -- fast with modular exponentiation	

• To decrypt C compute	

• M = Cd mod n 	

• Recall that e and n are public	

• If attacker can factor n, he can use e to easily find d
since ed = 1 mod (p−1)(q−1)	

• Factoring the modulus breaks RSA	

• It is not known whether factoring is the only way
to break RSA

encrypting & decrypting

18 EECE_412-05-public_crypto.key - October 2, 2014

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

RSA in the works

19 EECE_412-05-public_crypto.key - October 2, 2014

• Select “large” primes p = 43, q = 59 	

• Then n = p×q = 2537 and (p−1)(q−1) = 2436 	

• Choose e = 13 (relatively prime to 2436)	

• Find d such that ed = 1 mod (p−1)(q−1),  
we find that d = 937 works	

• note: d exists because gcd(e, (p-1)(q-1)) = 1	

• Public key: (N, e) = (2537, 13)	

• Private key: d = 937

simple RSA example: initialization

20 EECE_412-05-public_crypto.key - October 2, 2014

• plain text: M = “STOP” = (18 19, 14 15)	

• ciphertext: C = Me mod n =  
(181913 mod 2537, 141513 mod 2537) =  
20 81 21 82 = “UDVE”	

• fast modular exponentiation

simple RSA example: encryption

21 EECE_412-05-public_crypto.key - October 2, 2014

• ed = 1 mod (p−1)(q−1) ⇒ ∃ k s.t. ed = k(p-1)(q-1)+1	

• Cd ≣ (Me)d = Mde = M1+ k(p-1)(q-1)(mod n) 	

• Mp-1≣ 1 mod p and Mq-1≣ 1 mod q  
by Fermat’s Little Theorem:	

• If p is prime and a is an integer not divisible by p,
then ap-1 ≣ 1 mod p. Furthermore ap ≣ a mod p 	

• Cd ≣ M×((Mp-1)k(q-1)) mod p ≣ M × 1 mod p ≣ M mod p

• Cd ≣ M×((Mq-1)k(p-1)) mod p ≣ M × 1 mod p ≣ M mod q

• Because gcd(p,q) =1, Cd ≣ M mod p×q by Chinese
Remainder Theorem

simple RSA example: decryption

22 EECE_412-05-public_crypto.key - October 2, 2014

• Decrypt message 0981 0461	

• M ≣ Cd mod p×q

• 0981937 mod 2537 = 0704 = “HE”

• 0461937 mod 2537 = 1115 = “LP”

• HELP

simple RSA example: decryption

23 EECE_412-05-public_crypto.key - October 2, 2014

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Uses for
Public Key Crypto

24 EECE_412-05-public_crypto.key - October 2, 2014

• Confidentiality	

• Transmitting data over insecure channel	

• Secure storage on insecure media	

• Authentication	

• Digital signature provides integrity and non-
repudiation

• No non-repudiation with symmetric keys

Uses for
Public Key Crypto

25 EECE_412-05-public_crypto.key - October 2, 2014

• Alice orders 100 shares of stock from Bob	

• Alice computes MAC using symmetric key	

• Stock drops, Alice claims she did not order	

• Can Bob prove that Alice placed the order?	

• No! Since Bob also knows symmetric key, he
could have forged message	

• Problem: Bob knows Alice placed the order,
but he can’t prove it

Non-non-repudiation

26 EECE_412-05-public_crypto.key - October 2, 2014

• Alice orders 100 shares of stock from Bob	

• Alice signs order with her private key	

• Stock drops, Alice claims she did not order	

• Can Bob prove that Alice placed the order?	

• Yes! Only someone with Alice’s private key
could have signed the order	

• This assumes Alice’s private key is not stolen
(revocation problem)

Non-repudiation

27 EECE_412-05-public_crypto.key - October 2, 2014

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Sign and Encrypt  
vs  

Encrypt and Sign

28 EECE_412-05-public_crypto.key - October 2, 2014

• Sign message M with Alice’s private key:
[M]Alice	

• Encrypt message M with Alice’s public
key: {M}Alice 	

• Then	

{[M]Alice}Alice = M	

[{M}Alice]Alice = M

Public Key Notation

29 EECE_412-05-public_crypto.key - October 2, 2014

• Suppose that we want confidentiality and non-
repudiation	

• Can public key crypto achieve both?	

• Alice sends message to Bob	

• Sign and encrypt {[M]Alice}Bob	

• Encrypt and sign [{M}Bob]Alice	

• Can the order possibly matter? (see Stamp)

Confidentiality and 
 Non-repudiation

30 EECE_412-05-public_crypto.key - October 2, 2014

Alice Bob

{[M]Alice}Bob

 Q: What is the problem?	

 A: Charlie misunderstands crypto!

Charlie

{[M]Alice}Charlie

 M = “I love you”

Sign and Encrypt

31 EECE_412-05-public_crypto.key - October 2, 2014

32

Alice Bob

[{M}Bob]Alice

 Note that Charlie cannot decrypt M 	

 Q: What is the problem?	

 A: Bob misunderstands crypto!

Charlie

[{M}Bob]Charlie

 M = “My theory, which is mine, is this:
….”

Encrypt and Sign

32 EECE_412-05-public_crypto.key - October 2, 2014

• The Random Oracle model for Public Key Cryptosystems	

• Public key encryption and trapdoor one-way permutations	

• Digital signatures	

• Looking under the hood	

• Knapsack	

• RSA	

• Uses of Public Crypto	

• The order of sign and encrypt

Summary

33 EECE_412-05-public_crypto.key - October 2, 2014

