THE UNIVERSITY OF BRITISHCOLUMBIA

Public Key Cryptography

EECE 4 I2

What is it?

- Two keys
- Sender uses recipient's public key to encrypt
- Receiver uses his private key to decrypt
- Based on trap door, one way function
- Easy to compute in one direction
- Hard to compute in other direction
- "Trap door" used to create keys
- Example: Given p and q , product $\mathrm{N}=\mathrm{pq}$ is easy to compute, but given N , it is hard to find p and q

How is it used?

- Encryption
- Suppose we encrypt M with Bob's public key
- Only Bob's private key can decrypt to find M
- Digital Signature
- Sign by "encrypting" with private key
- Anyone can verify signature by "decrypting" with public key
- But only private key holder could have signed
- Like a handwritten signature

Topic Outline

- The Random Oracle model for Public Key Cryptosystems
- Public key encryption and trapdoor oneway permutations
- Digital signatures
- Looking under the hood
- Knapsack
- RSA
- Uses of Public Crypto
- The order of sign and encrypt

Public Key Encryption and

Trap-door One-Way Permutation

- Public Key Encryption Scheme:
- Key pair (KR, KR ${ }^{-1}$) generation function from random string R
- $K R \rightarrow K R^{-1}$ is infeasible
- $C=\{M\}_{K R}$
- $M=\{C\}_{K R}{ }^{-1}$

- In:
- fixed size short string (plaintext) M,
- Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

- Public Key Signature Scheme:
- Key pair ($\sigma R, \mathrm{VR}$) generation function
- VR $\rightarrow \sigma R$ is infeasible

- $S=\operatorname{Sig}_{\text {or }}(M)$
- $\{$ True, False $\}=\operatorname{Ver}_{\mathrm{VR}}(\mathrm{S})$

	Signing	Verifying
Input	Any string $M+$ or	$S+V R$
Output	$S=$ hash(M) \| cipher block	"True" or "False"

THE UNIVERSITY OF BRITISH COLUMBIA

Looking Under the Hood

Knapsack Cryptosystem

Knapsack Problem

- Given a set of n weights $\mathrm{W}_{0}, \mathrm{~W}_{1}, \ldots, \mathrm{~W}_{\mathrm{n}-1}$ and a sum S , is it possible to find $a_{i} \in\{0,1\}$ so that

$$
S=a_{0} W_{0}+a_{1} W_{1}+\ldots+a_{n-1} W_{n-1}
$$

(technically, this is "subset sum" problem)

- Example
- Weights $(62,93,26,52,166,48,91,141)$
- Problem: Find subset that sums to $\mathrm{S}=302$
- Answer: 62+26+166+48=302
- The (general) knapsack is NP-complete

Knapsack Problem

- General knapsack (GK) is hard to solve
- But super-increasing knapsack (SIK) is easy
- SIK: each weight greater than the sum of all previous weights
- SIK Example
- Weights $(2,3,7,14,30,57,120,251)$
- Problem: Find subset that sums to $\mathrm{S}=186$
- Work from largest to smallest weight
- Answer: $120+57+7+2=186$

Knapsack Cryptosystem

1. Generate super-increasing knapsack (SIK)
2. Convert SIK into "general" knapsack (GK)
3. Public Key: GK
4. Private Key: SIK plus conversion factors

- Easy to encrypt with GK
- With private key, easy to decrypt (convert ciphertext to SIK)
- Without private key, must solve GK (???)

Knapsack Cryptosystem

- Let $(2,3,7,14,30,57,120,251)$ be the SIK
- Choose $\mathrm{m}=41$ and $\mathrm{n}=491$ with m, n relatively prime and n greater than sum of elements of SIK
- General knapsack

$$
\begin{gathered}
(2 \cdot 41) \bmod 491=82 \\
3 \cdot 41 \bmod 491=123 \\
7 \cdot 41 \bmod 491=287 \\
14 \cdot 41 \bmod 491=83 \\
30 \cdot 41 \bmod 491=248 \\
57 \cdot 41 \bmod 491=373 \\
120 \cdot 41 \bmod 491=10 \\
251 \cdot 41 \bmod 491=471
\end{gathered}
$$

- General knapsack: $(82,123,287,83,248,373,10,471)$

Knapsack Example

- Private key: $(2,3,7,14,30,57,120,251), \mathrm{n}=491, \mathrm{~m}^{-1}=12$
- $\mathrm{m}^{-1} \bmod \mathrm{n}=41^{-1} \bmod 491=12$
- ($\left.\mathrm{x}^{-1} \mathrm{x}\right) \bmod \mathrm{n}=1 \bmod \mathrm{n}$
- Public key: $(82,123,287,83,248,373,10,471)$
- Throw away: $m=41$
- Example: Encrypt $150=10010110$

$$
82+83+373+10=548=C
$$

- To decrypt,
- $\left(\mathrm{C} \mathrm{m}^{-1}\right) \bmod \mathrm{n}=(548 \cdot 12) \bmod 491=193 \bmod 491$
- Solve (easy) SIK with $S=193$
- Obtain plaintext $10010110=150$

Knapsack Weakness

- Trapdoor: Convert SIK into "general" knapsack using modular arithmetic
- One-way: General knapsack easy to encrypt, hard to solve; SIK easy to solve
- This knapsack cryptosystem is insecure
- Broken by Shamir in I983 with Apple II computer
- The attack uses lattice reduction
- "General knapsack" is not general enough!
- This special knapsack is easy to solve!

THE UNIVERSITY OF BRITISH COLUMBIA

RSA

Cocks (GCHQ), independently, by
Rivest, Shamir and Adleman (MIT)

Rivest, Shamir, and Adleman

basics

- Let p and q be two large (e.g., 200 digits) prime numbers
- use probabilistic primality tests to find p \& q quickly
- Let $\mathrm{n}=\mathrm{p} \times \mathrm{q}$ be the modulus
- Factoring n is supposed to be hard (i.e., billions of years)
- e relatively prime to (p-1)(q-1) -- encryption exponent
- $\mathrm{d}=\mathrm{e}^{-1} \bmod (\mathrm{p}-1)(\mathrm{q}-1)$-- decryption exponent
- Throw Away: p, q
- Public key: (n, e)
- Private key: d
- Notation: public is in cyan, secret is in red

encrypting \& decrypting

- To encrypt message M compute
- $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}-$ - fast with modular exponentiation
- To decrypt C compute
- $M=C^{d} \bmod n$
- Recall that e and n are public
- If attacker can factor n , he can use e to easily find d since $e d=1 \bmod (p-1)(q-1)$
- Factoring the modulus breaks RSA
- It is not known whether factoring is the only way to break RSA

THE UNIVERSITY OF BRITISH COLUMBIA

RSA in the works

simple RSA example: initialization

- Select "large" primes $\mathrm{p}=43, \mathrm{q}=59$
- Then $\mathrm{n}=\mathrm{p} \times \mathrm{q}=2537$ and $(\mathrm{p}-1)(\mathrm{q}-1)=2436$
- Choose e = 13 (relatively prime to 2436)
- Find d such that ed = $1 \bmod (\mathrm{p}-1)(\mathrm{q}-1)$, we find that $\mathrm{d}=937$ works
- note: d exists because $\operatorname{gcd}(\mathrm{e},(\mathrm{p}-1)(\mathrm{q}-1))=1$
- Public key: $(\mathrm{N}, \mathrm{e})=(2537,13)$
- Private key: d=937

simple RSA example: encryption

- plain text: $\mathrm{M}=$ "STOP" $=(1819,1415)$
- ciphertext: $C=M^{e} \bmod n=$ $\left(1819^{13} \bmod 2537,1415^{13} \bmod 2537\right)=$ 2081 21 82 ="UDVE"
- fast modular exponentiation

simple RSA example: decryption

- \quad ed $=1 \bmod (p-1)(q-1) \Rightarrow \exists k$ s.t. $e d=k(p-1)(q-1)+1$
- $\quad \mathrm{C}^{\mathrm{d}} \equiv\left(\mathrm{M}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{M}^{\mathrm{de}}=\mathrm{M}^{1+\mathrm{k}(\mathrm{p}-1)(\mathrm{q}-1)(\bmod n)}$
- $\mathrm{Mp}^{-1} \equiv 1 \bmod \mathrm{p}$ and $\mathrm{Mq}^{-1} \equiv 1 \operatorname{modq}$ by Fermat's Little Theorem:
- If p is prime and a is an integer not divisible by p, then $\mathrm{a}^{\mathrm{p}-1} \equiv 1 \bmod \mathrm{p}$. Furthermore $\mathrm{a}^{\mathrm{p}} \equiv \mathrm{a} \bmod \mathrm{p}$
- $\mathrm{C}^{\mathrm{d}} \equiv \mathrm{M} \times\left(\left(\mathrm{M}^{\mathrm{p}-1}\right)^{\mathrm{k}(\mathrm{q}-1)}\right) \bmod \mathrm{p} \equiv \mathrm{M} \times 1 \bmod \mathrm{p} \equiv \mathrm{M} \bmod \mathrm{p}$
- $\mathrm{C}^{\mathrm{d}} \equiv \mathrm{M} \times\left(\left(\mathrm{M}^{\mathrm{q}-1}\right)^{\mathrm{k}(\mathrm{p}-1)}\right) \bmod \mathrm{p} \equiv \mathrm{M} \times 1 \bmod \mathrm{p} \equiv \mathrm{M} \bmod \mathrm{q}$
- Because $\operatorname{gcd}(\mathrm{p}, \mathrm{q})=1, \mathrm{C}^{\mathrm{d}} \equiv \mathrm{M} \bmod \mathrm{p} \times \mathrm{q}$ by Chinese Remainder Theorem

simple RSA example: decryption

- Decrypt message 09810461
- $M \equiv C^{d} \bmod p \times q$
- $0981937 \bmod 2537=0704=$ "HE"
- $0461937 \bmod 2537=1115=$ "LP"
- HELP

Uses for Public Key Crypto

Uses for
 Public Key Crypto

- Confidentiality
- Transmitting data over insecure channel
- Secure storage on insecure media
- Authentication
- Digital signature provides integrity and nonrepudiation
- No non-repudiation with symmetric keys

Non-non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- Problem: Bob knows Alice placed the order, but he can't drove it

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt

 vs
Encrypt and Sign

Public Key Notation

- Sign message M with Alice's private key: $[\mathrm{M}]_{\text {Alice }}$
- Encrypt message M with Alice's public key: $\{\mathrm{M}\}_{\text {Alice }}$
- Then
$\left\{[\mathrm{M}]_{\text {Alice }}\right\}_{\text {Alice }}=\mathrm{M}$
$\left[\{\mathrm{M}\}_{\text {Alice }}\right]_{\text {Alice }}=\mathrm{M}$

Confidentiality and Non-repudiation

- Suppose that we want confidentiality and nonrepudiation
- Can public key crypto achieve both?
- Alice sends message to Bob
- Sign and encrypt $\left\{[\mathrm{M}]_{\text {Alice }}\right\}_{\text {Bob }}$
- Encrypt and sign $\left[\{\mathbf{M}\}_{\text {Bob }}\right]_{\text {Alice }}$
- Can the order possibly matter? (see Samp)

Sign and Encrypt

M ="I love you"

Q: What is the problem?
A: Charlie misunderstands crypto!

Encrypt and Sign

$M=$ "My theory, which is mine, is this:

Note that Charlie cannot decrypt M
Q: What is the problem?
A: Bob misunderstands crypto!

Summary

- The Random Oracle model for Public Key Cryptosystems
- Public key encryption and trapdoor one-way permutations
- Digital signatures
- Looking under the hood
- Knapsack
- RSA
- Uses of Public Crypto
- The order of sign and encrypt

