

Public Key Cryptography EECE 412

What is it?

- Two keys
 - Sender uses recipient's **public key** to encrypt
 - Receiver uses his private key to decrypt
- Based on trap door, one way function
 - Easy to compute in one direction
 - Hard to compute in other direction
 - "Trap door" used to create keys
 - Example: Given p and q, product N=pq is easy to compute, but given N, it is hard to find p and q

How is it used?

• Encryption

- Suppose we encrypt M with Bob's public key
- Only Bob's private key can decrypt to find M
- Digital Signature
 - **Sign** by "encrypting" with private key
 - Anyone can verify signature by "decrypting" with public key
 - But only private key holder could have signed
 - Like a handwritten signature

Topic Outline

- The Random Oracle model for Public Key Cryptosystems
 - Public key encryption and trapdoor oneway permutations
 - Digital signatures
- Looking under the hood
 - Knapsack
 - RSA
- Uses of Public Crypto
- The order of sign and encrypt

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

- Public Key Encryption Scheme:
 - Key pair (KR, KR⁻¹) generation function from random string R
 - $KR \rightarrow KR^{-1}$ is infeasible
 - C = {M} _{KR}
 - M = {C} _{KR}-I


```
• In:
```

- fixed size short string (plaintext) M,
- Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

- Public Key Signature Scheme:
 - Key pair (σ R,VR) generation function \bigcirc
 - $VR \rightarrow \sigma R$ is infeasible
 - $S = Sig_{\sigma R}(M)$
 - {True, False} = $Ver_{VR}(S)$

	• •		
\mathbf{S}	 V	R	
	V		

Verifying Signing Any string $M + \sigma R$ Input S = hash(M) | cipher block"True" or "False" Output

Looking Under the Hood

THE UNIVERSITY OF BRITISH COLUMBIA

Knapsack Problem

• Given a set of n weights $W_0, W_1, ..., W_{n-1}$ and a sum S, is it possible to find $a_i \in \{0,1\}$ so that

 $S = a_0 W_0 + a_1 W_1 + \dots + a_{n-1} W_{n-1}$

(technically, this is "subset sum" problem)

• Example

- Weights (62,93,26,52,166,48,91,141)
- Problem: Find subset that sums to S=302
- Answer: 62+26+166+48=302
- The (general) knapsack is NP-complete

Knapsack Problem

- General knapsack (GK) is hard to solve
- But super-increasing knapsack (SIK) is easy
- SIK: each weight greater than the sum of all previous weights
- SIK Example
 - Weights (2,3,7,14,30,57,120,251)
 - Problem: Find subset that sums to S=186
 - Work from largest to smallest weight
 - Answer: 120+57+7+2=186

Knapsack Cryptosystem

- 1. Generate super-increasing knapsack (SIK)
- 2. Convert SIK into "general" knapsack (GK)
- 3. Public Key: GK
- 4. Private Key: SIK plus conversion factors

- Easy to encrypt with GK
- With private key, easy to decrypt (convert ciphertext to SIK)
- Without private key, must solve GK (???)

Knapsack Cryptosystem

- Let (2,3,7,14,30,57,120,251) be the SIK
- Choose m = 41 and n = 491 with *m*, *n* relatively prime and *n* greater than sum of elements of SIK
- General knapsack
 - $(2 \cdot 41) \mod 491 = 82$
 - $3 \cdot 41 \mod 491 = 123$
 - $7 \cdot 41 \mod 491 = 287$
 - $14 \cdot 41 \mod 491 = 83$
 - $30 \cdot 41 \mod 491 = 248$
 - $57 \cdot 41 \mod 491 = 373$
 - $120 \cdot 41 \mod 491 = 10$
 - $251 \cdot 41 \mod 491 = 471$
- General knapsack: (82,123,287,83,248,373,10,471)

Knapsack Example

- **Private key:** (2,3,7,14,30,57,120,251), n = 491, m⁻¹=12
 - $m^{-1} \mod n = 41^{-1} \mod 491 = 12$
 - $(x^{-1} x) \mod n = 1 \mod n$
- Public key: (82,123,287,83,248,373,10,471)
- Throw away: m = 41
- Example: Encrypt 150 = 10010110

82 + 83 + 373 + 10 = 548 = C

- To decrypt,
 - (C m⁻¹) mod n = $(548 \cdot 12) \mod 491 = 193 \mod 491$
 - Solve (easy) SIK with S = 193
 - Obtain plaintext 10010110 = 150

Knapsack Weakness

- Trapdoor: Convert SIK into "general" knapsack using modular arithmetic
- One-way: General knapsack easy to encrypt, hard to solve; SIK easy to solve
- This knapsack cryptosystem is **insecure**
 - Broken by Shamir in 1983 with Apple II computer
 - The attack uses lattice reduction
- "General knapsack" is not general enough!
- This special knapsack is easy to solve!

THE UNIVERSITY OF BRITISH COLUMBIA

Cocks (GCHQ), independently, by Rivest, Shamir and Adleman (MIT)

Rivest, Shamir, and Adleman

basics

- Let **p** and **q** be two large (e.g., 200 digits) prime numbers
 - use probabilistic primality tests to find p & q quickly
- Let $n = p \times q$ be the modulus
 - Factoring n is supposed to be hard (i.e., billions of years)
- e relatively prime to (p-1)(q-1) -- encryption exponent
- $\mathbf{d} = e^{-1} \mod (\mathbf{p} 1)(\mathbf{q} 1)$ -- decryption exponent
- Throw Away: p, q
- **Public key:** (n, e)
- Private key: d
- Notation: public is in cyan, secret is in red

encrypting & decrypting

- To encrypt message M compute
 - $C = M^e \mod n$ -- fast with modular exponentiation
- To decrypt C compute
 - $M = C^d \mod n$
- Recall that e and n are public
- If attacker can factor **n**, he can use **e** to easily find **d** since $ed = 1 \mod (p-1)(q-1)$
- Factoring the modulus breaks RSA
- It is not known whether factoring is the only way to break RSA

THE UNIVERSITY OF BRITISH COLUMBIA

RSA in the works

simple RSA example: initialization

- Select "large" primes p = 43, q = 59
- Then $n = p \times q = 2537$ and (p-1)(q-1) = 2436
- Choose e = 13 (relatively prime to 2436)
- Find d such that ed = 1 mod (p-1)(q-1), we find that d = 937 works
 - note: d exists because gcd(e, (p-1)(q-1)) = 1
- Public key: (N, e) = (2537, 13)
- **Private key:** d = 937

simple RSA example: encryption

- plain text: $M = "STOP" = (18 \ 19, \ 14 \ 15)$
- ciphertext: C = M^e mod n = (1819¹³ mod 2537, 1415¹³ mod 2537) = 20 81 21 82 = "UDVE"
 - fast modular exponentiation

simple RSA example: decryption

- $ed = 1 \mod (p-1)(q-1) \Rightarrow \exists k \text{ s.t. } ed = k(p-1)(q-1)+1$
- $C^{d} \equiv (M^{e})^{d} = M^{de} = M^{1+k(p-1)(q-1)} \pmod{n}$
- M^{p-1}≡ 1 mod p and M^{q-1}≡ 1 mod q by Fermat's Little Theorem:
 - If *p* is prime and *a* is an integer not divisible by *p*, then $a^{p-1} \equiv 1 \mod p$. Furthermore $a^p \equiv a \mod p$
- $C^d \equiv M \times ((M^{p-1})^{k(q-1)}) \mod p \equiv M \times 1 \mod p \equiv M \mod p$
- $C^d \equiv M \times ((M^{q-1})^{k(p-1)}) \mod p \equiv M \times 1 \mod p \equiv M \mod q$
- Because gcd(p,q) =1, C^d ≡ M mod p×q by Chinese Remainder Theorem

simple RSA example: decryption

- Decrypt message 0981 0461
- $\mathbf{M} \equiv \mathbf{C}^{\mathsf{d}} \mod \mathbf{p} \times \mathbf{q}$
- $0981^{937} \mod 2537 = 0704 = "HE"$
- $0461^{937} \mod 2537 = 1115 = "LP"$
- HELP

THE UNIVERSITY OF BRITISH COLUMBIA

Uses for Public Key Crypto

Uses for Public Key Crypto

- Confidentiality
 - Transmitting data over insecure channel
 - Secure storage on insecure media
- Authentication
- Digital signature provides integrity and nonrepudiation
 - No non-repudiation with symmetric keys

Non-non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice computes MAC using symmetric key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- No! Since Bob also knows symmetric key, he could have forged message
- Problem: Bob knows Alice placed the order, but he can't prove it

Non-repudiation

- Alice orders 100 shares of stock from Bob
- Alice signs order with her private key
- Stock drops, Alice claims she did not order
- Can Bob prove that Alice placed the order?
- Yes! Only someone with Alice's private key could have signed the order
- This assumes Alice's private key is not stolen (revocation problem)

Sign and Encrypt vs Encrypt and Sign

Public Key Notation

- Sign message M with Alice's private key: [M]_{Alice}
- Encrypt message M with Alice's public key: {M}_{Alice}
- Then

 $\{[M]_{Alice}\}_{Alice} = M$ $[\{M\}_{Alice}]_{Alice} = M$

Confidentiality and Non-repudiation

- Suppose that we want confidentiality and nonrepudiation
- Can public key crypto achieve both?
- Alice sends message to Bob
 - Sign and encrypt $\{[M]_{Alice}\}_{Bob}$
 - Encrypt and sign $[{M}_{Bob}]_{Alice}$
- Can the order possibly matter? (see Stamp)

Sign and Encrypt

M = "I love you"

Q: What is the problem? A: Charlie misunderstands crypto!

Encrypt and Sign

M = "My theory, which is mine, is this:

Note that Charlie cannot decrypt M Q: What is the problem? A: Bob misunderstands crypto!

32

Summary

- The Random Oracle model for Public Key Cryptosystems
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures
- Looking under the hood
 - Knapsack
 - RSA
- Uses of Public Crypto
- The order of sign and encrypt