
Keystroke Logging of a
Wireless Keyboard

William Ma, Antony Mbugua, Dickson
Poon

Abstract – This paper investigates the
security of Bluetooth. We detail the
vulnerability of Bluetooth keyboards to
keystroke logging. We demonstrate the
feasibility of sniffing Bluetooth
transmissions, and give a recorded key
pairing, we show that cracking is possible.
We also make recommendations for
improvement of secure use of such
keyboards.

Keywords – Bluetooth, Security, Human
Interface Device, HID, Keylogging,
Sniffing, Privacy.

I. INTRODUCTION
A. Keystroke Logging
 Key stroke logging (or keylogging) is a
process of capturing keystrokes from a
keyboard. One approach is compromising the
kernel of the operating system, providing
complete access to keystrokes and also making
the logger extremely difficult to detect and
counter. Other approaches are to use OS hooks
to detect and capture keystrokes, as well as
implementation flaws and vulnerabilities in the
OS.
 A physical keystroke logger can also be
created that is attached between the keyboard.
It is a small device consisting of an IC and some
memory that will intecept the signals from the
keyboard, decode and store them and then
forward them to the computer over the PS/2 or
USB interfaces.
 The use of a keylogger allows attackers to
gain confidential data such as passwords,
which can later be used to bypass other
security measures. As such, keystroke loggers
pose a serious threat to privacy and security of
any computer with a keyboard. The risks posed
by software and hardware keyloggers are well
known and understood, as they have been in
existence for two decades. However the recent
growth in wireless technology and devices has
created the potential for a new kind of
keystroke logging; keylogging over wireless
channels.

B. Bluetooth
 Bluetooth is a short range communications
technology that enables enabled devices to
communicate through small ad-hoc networks.
Its low power requirements and relatively low
cost has made it ideal for use in wireless
headsets and keyboards. Bluetooth operates on
the non-regulated ISM band: 2.4GHz, where it
uses 79 1MHz channels. To avoid interference
with other devices, Bluetooth hops frequency at
a rate of 3.2K hops/sec or 1.6K hops/sec. The
hop sequence is pseudo-random based on the
Bluetooth device address and the Clock offset
on the master. The core protocols form a four-
layer stack consisting of the following elements:
 i) Radio – Specifies details of the air interface,
including frequency, the use of frequency
hopping, modulation scheme, and transmit
power.
 ii) Baseband (LC)– Concerned with connection
establishment within a piconet, addressing,
packet format, timing, and power control.
 iii) Link manager protocol (LMP) – Responsible
for link setup between Bluetooth devices and
ongoing link management. This includes
security aspects such as authentication and
encryption, plus the control and negotiation of
baseband packet sizes.
 iv) Logical link control and adaptation protocol
(L2CAP) – Adapts upper-layer protocols to the
baseband layer. L2CAP provides both
connectionless and connection-oriented
services.
 The Piconet is the basic networking unit in
Bluetooth. It consists of one Master device to
which between 1 and 7 Slave devices can
connect. The devices on the piconet synchronize
to the master device and share a common
frequency hopping scheme. Devices can be in
more than one piconet, and goups of piconets
that overlap form a scatternet.

Figure 1: The Bluetooth Architecture [1]

II. BLUETOOTH SECURITY
From its creation, Bluetooth has emphasized
security as something of great importance.
There are several techniques that for its basis
for security.

1) Frequency hopping.
 While frequency hopping not only prevents
collisions between devices that need to share
the same frequencies, but it also makes sniffing
a much harder prospect.

2) Discoverable modes
The three discoverable modes address how the
device responds to queries

i) Discoverable responds to all inquiries.
ii) Limited discoverable mode makes the

device visible for a short period of time.
iii) Non-discoverable mode never replies to

an inquiry.

3) Bluetooth Address
 The address of a device is a 48 bit field, the
first 3 bytes of which correspond to the
manufacturer and the last 3 are usually device
specific. However sometimes only a limited
range of the 3 bytes are used in giving a device
a unique address. This is insecure as it allows
for brute forcing of addresses to discover 'non-
discoverable' devices.

4) Pairing modes also determine if a device can
be paired with, or join a piconet. The device
can be in pairing or non-pairing mode, meaning
it will accept connections or it won't.

5) Bluetooth uses a PIN as a passkey when
pairing. This is usually entered on one or both
of the devices. It is a UTF8 encoded
alphanumeric sequence that ranges between 8
and 128 bits. However, many devices only use a
numerical passkey, which makes the PIN much
less secure.

6) Security modes
Bluetooth devices operate in several different
security modes:

i) Mode 1 has no security or encryption.
ii) Mode 2 has no security until channel is

established on L2CAP level (software).
iii) Mode 3 has security initiated before the

link setup on the LMP level (hardware).

III. BLUETOOTH VULNERABILITIES

Despite the efforts of the Bluetooth SIG to make
the technology secure, there are several
significant vulnerabilities. One vulnerability is
the ability of an attacker to find non-
discoverable devices by passively listening to a
preset channel until a device hops by. Then
from the Bluetooth preamble in the packet
header, the channel access code and other
information in the preamble, the remaining 8
bits of the Bluetooth device's address can be
brute forced. From this address and the address
of the master device, the rest of the hopping
sequence can be found.
 The two vulnerabilities that we shall focus on
in our attempt to log the keystrokes of a
Bluetooth HID shall be the weakness of most
PINs used for the initial pairing process and the
ability to force the two devices to restart the
pairing process.

A. PIN attack
This attack is built upon the fundamental
weakness of the pairing process, whereby the
initial RAND is sent in plaintext over the air.
The details of the pairing process are below:
 i) Master (A) generates RAND and sends to
slave (B). Master and slave generate Kinit =
E22(RAND, PIN, PIN_LEN)
 ii) A generates RANDA, and B generates
RANDB. Random numbers are XORed with Kinit
and the result is sent to other device.
 iii) Each device creates the link key LKAB by
XORing the results of LKA=E21(RANDA,
ADDRA) and LKB=E21(RANDB, ADDRB)
 iv) Next the two devices authenticate each
other by sending an AU_RAND challenge and
waiting for the correct SRES. Where SRESB =
E1(AU_RANDA, ADDRB, LKAB)

This sequence is shown below:

Src Dst Data Length Notes

1 A B IN_RAND 128 bit plaintext

2 A B LK_RANDA 128 bit XORed
with Kinit

3 B A LK_RANDB 128 bit XORed
with Kinit

4 A B AU_RANDA 128 bit plaintext

5 B A SRESB 32 bit plaintext

6 B A AU_RANDB 128 bit plaintext

7 A B SRESA 32 bit plaintext
Table 1: The initial Bluetooth pairing process [2]

The first 5 messages are all that is needed to
crack the PIN, which is the only part of the
authentication process that he/she would not
know. This is achieved through a relatively
simple process that is detailed in the diagram
below. It works by incrementally changing the
PIN and calculating the subsequent data and
link keys and finally calculating an SRES and
comparing it to the sniffed SRESB. If they are
the same, then the PIN and Link Key are the
same and the attacker can now decrypt all
subsequent transmissions.

Figure 2: The PIN cracking algorithm [2].

B. Re-Pairing attack
After the two devices have been paired it is
practically impossible to break the encryption
through brute force. Furthermore, since they
have already paired before, they do not go
through this step and simple authenticate each
other. To do this, the master sends the slave a
AU_RAND message and expects the slave to
reply with a SRES message. If the slave has
forgotten the key then it sends a
LMP_not_accepted message. The only recourse

is to force the master and slave devices to re-
pair. There are several ways of doing this:
i) The first way of achieving this is to inject an
LMP_not_accepted message towards the master
after it has sent out the AU_RAND. This will
convince the master that the slave has forgotten
its link key and needs to re-pair.
ii) Alternately, the attacker can send an
IN_AUTH message to the slave, convincing it
that the master has forgotten the link key and
needs to re-pair.
iii) Finally, after the master has sent out an
AU_RAND message, the attacker could send out
a random SRES reply. This would be the wrong
SRES and so after a number of these failed
attempts to authenticate, the master would be
forced to re-pair.

The re-pairing attack in combination with the
PIN attack is sufficient for cracking the
messages sent between the master and slave,
i.e. To effectively eavesdrop on the
communications. It has been demonstrated that
cracking a 4 digit PIN can be accomplished in
less than 0.1 seconds and a 6 digit PIN can be
accomplished in in less than 20 seconds on a
modern processor.

IV. KEYLOGGING OF A BLUETOOTH HID

A. The HID Device
Out target device for keylogging is a Bluetooth
Human Interface Device. This Rocketfish
keyboard is representative of the average
Bluetooth keyboard. It uses a HID Bluetooth
profile and thus sends out standard HID data
over Bluetooth.

Figure 3: The Rocketfish Keyboard.

B. The tools
To sniff the keyboards, Bluetooth transmissions,
we used the Bluetooth Analyzer from Frontline
Test Equipment, Inc. This provided us with a
range of tools to capture and effectively analyze

the packets. To do this we searched for the
appropriate packets that corresponded to the
initial pair set up process, which were
highlighted by their Bluetooth LMP opcode by
the Analyzer.

Figure 4: Viewing packets with Frontline BT
Analyzer.

After the pairing exchange was exported, we
opened it in BTCrack

Figure 5: Cracking the PIN.

We were then able to crack the PIN for our
keyboard, computer pairing buy simply
entering our two BT_ADDRs and the right
capture file. The BTCrack software is based off
the PIN attack algorithm described above.

While we were able to sniff out and crack the
PIN for a paired keyboard and computer, we
were unable to find a way to force a re-pairing
to occurr. We also realized that our goal of
building such a Bluetooth keylogger is not
feasible because of the large cost and
complexity required to build it.

We did find that the sniffing of Bluetooth
packets was possible through a building with a
high gain antenna, this greatly increases the
threat of spying as an attacker can be in the
next building listening in on the transmissions.

V. RECOMMENDATIONS

Now that the keystroke logging potential of
Bluetooth keyboards has been demonstrated , it
is advisable to not use Bluetooth keyboards for
secure or sensitive work. The risk is real and
needs to be mitigated by always pairing in a
'secure' location. Avoid using unit (default
device) keys and always try to use long
alphanumeric passkeys instead of all digits. It is
also advisable to be wary of sudden requests for
re-pairing as the Link keys are stored in non-
volatile memory, there are very few legitimate
reasons for such a request.

VI. CONCLUSION

Knowing the addresses of the two devices in
question, we were able to sniff the pairing
process using the Frontline Blutooth Analyzer
suite. We used the collected data packets as the
input for BTCrack, whereby we were able to
successfully crack the PIN code. It was verified
to be the same as the one entered initially
during the pairing. We were unable to decode
the data within the HID over Bluetooth
transmissions due to time constraints. We have
successfully shown that it is possible to
eavesdrop a Bluetooth keyboard, fortunately it
is prohibitively expensive. We were also unable
to find a way to successfully force a re-pairing
event. This would take specialized and custom
built hardware, which we do not have access to
nor the resources to create.

REFERENCES

[1] Bluetooth SIG. (2007). How Bluetooth
Technology Works [Online].
Available:
http://bluetooth.com/Bluetooth/Learn/Works

[2] Shaked, Y. and Wool, A. (2005). Cracking the

http://bluetooth.com/Bluetooth/Learn/Works

Bluetooth PIN [Online].
Available:
http://www.eng.tau.ac.il/~yash/shaked-wool-
mobisys05/

[3] Finistere, K. and Zoller, T. (2007). Bluetooth
Hacking Revisited [Online].
Available: http://secdev.zoller.lu/

[4] Btdesigner.com (2007). BT Designer
Glossary [Online].
Available: http://www.btdesigner.com/ptot.htm

[5] Hager, C.T.; Midkiff, S.F.; “An analysis of
Bluetooth security vulnerabilities”. 2003.
Wireless Communications and Networking,
WCNC 2003.

http://www.btdesigner.com/ptot.htm
http://secdev.zoller.lu/

