

Abstract—This report is a security analysis of EASports
commercial website which attempts to identify security
vulnerabilities. This analysis tests for many of the common
vulnerabilities found on websites, and includes additional tests
of their content management system. Most of the tests did not
reveal security problems, with the exception of the content
management system where some oversights during setup
provided opportunities for many types of attacks. The details of
all of these tests are presented. A discussion of EASports
security risks, the web sites adherence to common security
principles, and its privacy certification follows. This analysis
was responsible for the identification and correction of a major
exploit.

Index Terms—
CMS – Content Management System

I. INTRODUCTION

HE intent of a security analysis is to identify potential
vulnerabilities which can potentially be exploited in

order to cause damage or steal information. The final goal of
an analysis is to not only find these vulnerabilities, but also to
correct them.

T

The internet is full of websites that were hastily created
with little or no thought put into security. For those
individuals looking to steal personal information, spread
spam email, or infect computers with malware, the internet is
rich with opportunities and there is a lot of illegal money to
be made. A website security analysis is one way to limit these
opportunities.

For users of insecure websites, they risk identity theft,
which can lead to further financial losses if credit card or
banking information is collected directly or indirectly. Users
also risk having their computers infected with some form of
malware. For corporations, who use unsecure websites to
promote their name, products, or conduct online sales, they
risk their company’s reputation, their customer’s goodwill
and trust, and sales. All of these leading to a loss in profits,
the life blood of most companies.

The website chosen for this security analysis is
EASports.com. EASports.com is a large enterprise website
with potential risks to both its users and itself. The website
boasts over 14 million users, making the risk proportionately
large. EASports.com is the marketing website for the
collection of games produced by EA Sports. Many financial
transactions are made as well. As such, any downtime results
in loss of revenue. Furthermore, it is also the community site



for their games and displays some properties common to
social networking sites. This also increases the risk of attacks
like XSS since there are numerous user inputs.

Those seeking to exploit website vulnerabilities have a
common set of techniques at their disposal. So, in doing a
security analysis, this is a likely place to start. What follows
in section II of this report is a discussion of these common
attacks, and even though they failed to expose any security
vulnerabilities, the analysis procedure would have been
incomplete had they been neglected. EASports.com uses a
content management system (CMS) to manage their online
website; this was another point of interest during the analysis
and, as a result, a major security vulnerability was revealed.
That vulnerability is discussed at the end of section II.

Section III discusses the potential security risks specific to
EASports.com and their website users. There are a set of 10
security principles that should be followed in order to make a
secure website, section IV discusses which particular
principles were violated by EA.

EASports.com has been TRUSTe certified as a secure
website and section V discusses what this certification is and
its implications. EASports.com was notified of its security
problems and they have taken measures to correct the
problems. Section VI discusses what measure they have
taken. Finally, there are some concluding remarks in section
VII.

II.STEPS TAKEN TO IDENTIFY SECURITY VULNERABILITIES

A. SQL Injection

This attack relies on the fact that user input is inserted into
a preformed SQL statement. Ordinarily the user input is
interpreted as a string, but a malicious user can write a
statement that will be interpreted as more than just data,
which can potentially cause grave harm. This can enable the
malicious user to bypass authentication, read private
information, or change and delete information on the
database. This attack is easily solved by filtering out
potentially offending characters from the input, ensuring that
it is nothing more than a string and cannot be interpreted as a
SQL statement. This fix is only as strong as its weakest link;
every single user input field on the entire site must have this
filtering.

When analyzing EASports.com for SQL Injection
vulnerabilities, the site would not respond to any overt SQL
statements put into these fields, indicating that some form of
validation occurred on the server side. The error messages
provided by the site after unsuccessful SQL attacks (if any)

EECE 412 – Security Analysis of EASports.com
Maxime Perreault, David Rosberg, Peter Vautour, David Wang

maxime.perreault@gmail.com -- drosberg@gmail.com -- peterv@ece.ubc.ca -- 18davidwang@gmail.com

1

were generic and did not reveal any technical details.

B. Cross-site Scripting

Sometimes, it is possible for a user to inject script, such as
JavaScript, into a website to enable an otherwise legitimate
and safe page to run something insecure. This occurs when a
web designer presumes that the user will supply a text input,
but does not consider the possibility that the text may be
interpreted as a script. This could potentially put other users
at risk or cause some form of damage to the site. Cross-site
scripting can be used for many purposes, such as stealing the
session ID's of other users. No exploits of this type were
found; EASports.com would not run or display scripts
provided as inputs. As with SQL injections, there was some
form of validation occurring on the server. Other variations of
the input were attempted to bypass the validation without
success.

C.AJAX

Using AJAX in web applications enables web applications
to do more for the user. Due to a combination of client-side
and server-side processing, AJAX applications can be more
responsive and flexible. However, the increased complexity
may also introduce security vulnerabilities. Because data
transfer isn't limited to GET and POST commands of regular
HTML, there are more potential holes for attackers to exploit.
An analysis of several sessions where AJAX requests and
responses occurred yielded no results.

D.Session Management

After authentication, a server will issue a “session ID” to
the user. This session ID is intended to be unique and has a
limited lifespan before it expires. If a malicious user is able to
acquire someone's session ID, they will be able to
impersonate that user until the session is ended or times out.
Sometimes session ID's are particularly weak or last
particularly long, giving a reasonable opportunity for an
attacker to acquire a valid one without having to actively steal
it from the victim. The session ID's generated by
EASports.com were both sufficiently long and random;
effectively minimizing the chances of randomly guessing a
valid ID.

E. Insecure Configuration

A web server, by default, is exposed to the Internet and has
inherent security risks. Security firmware needs to be
installed and regularly updated, and all aspects of the site
need to be configured properly. It only takes one poorly
configured security setting to allow access to a malicious user.
Even something as innocuous as an overly informative error
message may direct an attacker's attention towards a potential
weakness.

The EASports website had a single severe vulnerability in
its configuration: the content management system (CMS) was
exposed and accessible to the public. Only a single password
prompt separated the user from being able to directly access
the CMS. This vulnerability will be discussed in greater detail
in the following section.

F. Insecure Communication

It is possible that sensitive information may be intercepted
over the internet. Using a proper security protocol to prevent
this from happening is critical. The use of SSL for any
sensitive traffic – not just for authentication – is necessary to
maintain the integrity and confidentiality of this data. As a
website that makes financial transactions, EASports.com
routinely handles valuable information such as credit card
numbers. By inspecting incoming and outgoing packets, it
was confirmed that all sensitive information was encrypted
and it would be very difficult for an attacker to discover the
contents.

G.Parameter Tampering

HTTP was originally designed to be stateless. Web
developers creating a web application have the difficult task
of maintaining state. The output produced by a page depends
entirely on the user's input, cookies and the state of a
database, and nothing else. Any information stored or
provided by the client-side of the web application may be
subject to manipulation by a malicious user; this can be in the
form of cookies, hidden fields, or parameters imbedded in the
URL. The attack can be stopped by server-side filtering, as it
is ultimately the web application that responds to requests.
The program “WebScarab” was used to view and tamper with
many of these parameters, but opportunistic manipulation of
the behavior of the site wasn’t successful. Important
information and permissions were adequately maintained on
the server-side.

H.CMS

As a major community and marketing website for a large
number of sports games, EASports.com must provide its users
with fresh content on a regular basis. In order to meet this
goal, a content management system known as Alfresco[1] is
used. Alfresco as a web content management system allows
EA's nontechnical staff to publish content to the website. This
added flexibility comes at a price: it introduces another
complex system that must be secured. This was not done
properly.

The first sign of an exploit came in discovering how
content was retrieved. The URLs of their content suggested
that it was dynamically queried. For example, a picture of
their logo can be found at the following website:
http://cdn.content.easports.com/alfresco/service/eaapi/node/co
ntent/avm/easportscom/-
1;www;avm_webapps;ROOT;;_assets;en_US;sportsworld_log
o.png. A little research revealed that Alfresco is a content
management system used by EA to serve content. EA is even
listed as a customer on Alfresco's home page. The next stage
of this project was gathering information about Alfresco. The
open source version was downloaded and analyzed. Important
paths (i.e. for admin panels), default accounts and passwords,
and interfaces that Alfresco provides were noted. With this
information in hand, it became evident that the content was
retrieved by making calls to an Alfresco webscript. This was
the second sign of a major exploit; it was possible to directly
execute web scripts on EA's content management system.

2

http://cdn.content.easports.com/alfresco/service/eaapi/node/content/avm/easportscom/-1;www;avm_webapps;ROOT;;_assets;en_US;sportsworld_logo.png
http://cdn.content.easports.com/alfresco/service/eaapi/node/content/avm/easportscom/-1;www;avm_webapps;ROOT;;_assets;en_US;sportsworld_logo.png
http://cdn.content.easports.com/alfresco/service/eaapi/node/content/avm/easportscom/-1;www;avm_webapps;ROOT;;_assets;en_US;sportsworld_logo.png

Next, the theory that all requests matching the regular
expression” /alfresco/**” were redirected to Alfresco was
tested. An admin path (/alfresco/service/index) that was
found earlier during the research on Alfresco was attempted.
The theory turned out to be correct; all requests matching the
regular expression above were sent to the CMS without any
validation. However, all admin screens can only be accessed
by an administrator's account. The default administrator
account (admin/admin) was attempted and was found to be
valid. Together with the previous weakness, an attacker could
install and execute any web script directly against EA's
production Alfresco installation. Moreover, the attacker's
webscript can run as the admin user; thus there would be no
restrictions on the amount of damage possible.

At this point, several flaws had been revealed that would
allow an attacker complete access to EA's content. This
included news posts, blog posts, pictures, videos, etc. From
here, several attacks were crafted to take full advantage of
this exploit. Testing these on EA's production server was out
of the question, so all work from this point was done on a
local installation of Alfresco. It was possible to remove select
pieces or the entire set of content. It was also possible to lock
the project so no new updates could be made; together with
changing the admin password could serve as a denial-of-
service attack. Finally, the last attack attempted was inserting
arbitrary strings into content whose type was text or html.
Alfresco's API allowed us to perform this last attack. This
could enable an attacker to launch attacks on the users of
EASports.com. The arbitrary string could easily have been a
malicious JavaScript program. From there, a whole host of
attacks against users are possible (i.e. session stealing).

III. ANALYSIS OF SECURITY RISKS

Risk is a combination of the probability that an event will
occur and the consequences of its occurrence. It can be
represented as the following formula:

Risk = Assets * Threats * Vulnerabilities [2]
Assets are the tangible and intangible things one owns that

could be lost. Threats are the potential means by which loss
many occur. The vulnerabilities are the weaknesses in one’s
existing security measures that allow threats to be successful.
[2][3]. To analyze the security risks at EASports, it is
important to first identify its assets. Below are the assets that
were discovered:

 Brand and reputation
 Client’s trust
 Client’s personal information (credit card number)
 Content integrity

Then, some of the threats to those assets were identified:
 Password-stealing
 Video sharing to gain popularity
 Inevitable targeting of video to distribute malicious

code
 Denial of service
 Session stealing
 Disclosure of private information

These threats could be caused by the following threat agents:
 Students (research purpose)
 Hackers
 Opposing companies
 Dissatisfied customers

Potential sources of vulnerabilities could also be caused by
human factors such as:

 Honesty of employees
 Morality of employees
 Knowledge of security
 Habits of safe computing
EASports’ large asset value contributes to a much greater

risk. Since threats cannot be controlled, the risk can be
minimized by coming up with security measures to protect
assets. In the next section, some general security principles
for designing a secure system will be discussed.

IV. SECURITY PRINCIPLES

It is generally accepted that there are a set of 10 security
principles that should be followed in order to design a secure
system. Four of these principles were violated when
EASports.com website was implemented.

1. Fail-Safe Defaults
When designing any complex system, it is important to

consider that individuals involved in the installation or
operation of that system may not understand the inner
workings of that system, and more importantly the
repercussions that may follow if that system is not set up
properly. When it comes to security issues, steps should be
taken in order to ensure that security is not left as a secondary
consideration. One important step is to make sure that the
systems default settings are secure and to not rely on the
installers or operators to choose those settings.

The Content Management System that EASports uses did
not follow this philosophy. The system has an insecure admin
password that needs to be changed at installation time.
Although the use of such a default password is necessary at
installation time, the system should have a reminder to
change the password if the default password was still in use.

2. Least Common Mechanism

The principle of “least common mechanism” states that
one should minimize the amount of mechanism common to
more than one user and depended on by all users. EASports
failed to do so. It completely exposed its CMS to the Internet
merely to serve content to its users. As a side effect, any one
could access administrative functions. EA should have
limited the scope of access to the CMS by providing a
separate mechanism to query content.

3. Defense in Depth
It is important to have security mechanisms in place to

protect your assets. However, relying on just one mechanism
has not always proven safe. If that one mechanism fails, there
will be no other barriers to protect your assets. Having
multiple levels of protection, or defense in depth, is a much
better option. If one system fails, you are still protected.

3

A simple manipulation of EASports web address was
able to trigger the admin password prompt to come up.
Having the default admin password still in use made that one
barrier easy to bypass. Rather than relying on a single hurdle,
there should have been an additional barrier such as URL
filtering to prevent indiscriminate access to the CMS. This
would have made it far more difficult to gain access to the
inner workings of the system.

4. Question Assumptions
With any security features, there are assumptions made

about; the environment the system will work in, who will
access the system, how the system will be configured, who
will operate the system, etc. Although it is not possible to
design systems without making some assumptions, it is
important to verify and revisit these assumptions from time to
time. The reason is simply that they may not be valid in all
circumstances and over time, changes may occur that render
these assumptions invalid.

It is very likely that, at installation time, it was assumed
that the default admin password would be changed before
going to production. But, obviously, no one followed up to
verify that assumption, and the password was never changed.
The website also underwent a security compliance audit
where again, it was probably assumed that strong passwords
were in place. The next section discusses more about the
compliance audit.

V. TRUSTE CERTIFICATION

According to their website [4], TRUSTe is a leader in
internet privacy service and has been providing this service
since 1997. It was founded as a non-profit organization with
the intent of promoting online commerce by aiding businesses
and organizations in self-regulating privacy concerns. Out of
that came the TRUSTe Privacy Seal, a logo that can be
displayed on a website which certifies that the business or
organization has met with a list of standards [5] that TRUSTe
considers adequate to protect the privacy of individuals using
the site. That list requires that the site must protect against
unauthorized access. Websites displaying the logo must
undergo regular compliance monitoring to ensure that the site
not only initially meets the standards, but continues to uphold
them.

The goal, of course, is that users of a certified website can
assume that their private information is kept secure. As stated
on the TRUSTe website; “Web sites can build trust with their
customers and increase sales and registrations” [PV1]. This
assumption, based on this security analysis, may not be a very
sound one. Although the compliance monitoring did ensure
that most of our efforts to uncover security vulnerabilities met
with failure, it fell short in ensuring that EASports was acting
responsibly when it came to accessing their own content
management system. This failure effectively undermined all
other efforts to secure the website.

TRUSTe, perhaps, needs to extend its compliance
monitoring beyond the purely technical aspects of securing a
website, to ensure that the operators of the site are acting

responsibly.

VI. CORRECTIVE MEASURES

The details of this exploit were communicated to the
appropriate parties in EA. The exploit was fixed within 24
hours of disclosure; this further highlights the severity of this
exploit. Later, it was confirmed that the exploit was indeed
removed. URL filtering was now being done and only certain
queries were now being redirected to the CMS. As such, it
was no longer possible to access any administrative
interfaces.

VII. CONCLUSION

This analysis revealed several facets of enterprise web
security. Large investments go into fixing popular types of
attacks. We couldn't find a single traditional exploit.
However, security of the web site is only as strong as its
weakest link. In this case, gaining access to the CMS enabled
a host of various attacks. Moreover, enterprises have a large
budget and can afford spending time and money on security.
Most websites don't have this luxury. Despite the efforts in
securing EASports.com and the fact that it is TRUSTe
certified, we were still able to uncover a major security flaw.
This may be due to the dynamic nature of our particular
target; frequent changes are required due to new releases and
the need to provide users fresh content. In general, this
illustrates the complexities and challenges in securing a given
web application.

REFERENCES

[1] Alfresco, Nov 27, 2009. [Online]. Available: http://www.alfresco.com
[Accessed: Nov 27, 2009].

[2] R. Anderson, Security Engineering, John Wiley & Sons, New York, 2001.

[3] The Center for Information Systems Security Studies and Research. Nov 27,
2009. [Online]. Available: http://cisr.nps.edu/downloads/nps_cs_05_010.pdf
[Accessed: Nov 27, 2009]

[4] Truste home page. Nov 07, 2009. [Online]. Available:
http://www.truste.com/ [Accessed: Nov 27, 2009]

[5] Truste, Privacy Program Requirements, Nov 07, 2009. [Online]. Available:
http://www.truste.com/privacy_seals_and_services/consumer_privacy/privacy-
programs-requirements.html [Accessed: Nov 27, 2009].

4

http://www.truste.com/privacy_seals_and_services/consumer_privacy/privacy-programs-requirements.html
http://www.truste.com/privacy_seals_and_services/consumer_privacy/privacy-programs-requirements.html
http://www.truste.com/
http://cisr.nps.edu/downloads/nps_cs_05_010.pdf
http://www.alfresco.com/

	I. INTRODUCTION
	II. Steps taken to identify security vulnerabilities
	A. SQL Injection
	B. Cross-site Scripting
	C. AJAX
	D. Session Management
	E. Insecure Configuration
	F. Insecure Communication
	G. Parameter Tampering
	H. CMS

	III. Analysis of Security Risks
	IV. Security Principles
	V. Truste certification
	VI. Corrective Measures
	VII. Conclusion

