
EECE 412 2010W

An Analysis on Google Chrome

December 6, 2010

Tony Lei, Alfred Lam

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, Canada

Tony: fious@interchange.ubc.ca, Alfred: alfred89@interchange.ubc.ca

ABSTRACT: Google Chrome is a more recent

browser with some unique features (sandboxing

feature for example). Chrome is finding more users

every year. As its popularity increases, more

attention to its features is inevitable. This report will

feature an analysis on its pop-up blocker,

JavaScript blocker, sandboxing feature, safe

browsing, and auto-update process. The pop-up

blocker is tested for its thoroughness and if a bypass

is possible. JavaScript is analyzed on specific

usages in different websites. Sandboxing is

explained and a work-around is looked upon.

Chrome’s safe browsing design and updating

process is examined and possible design

improvements are searched into.

I. INTRODUCTION

Google Chrome is a web browser released in late

2008. Chrome’s first intention was to be a fast

and secure browser. Chrome creates individual

processes as each tab opens (sandboxing). This

also makes it fast since each this means each

webpage is handled as an individual process. As

for security, Chrome openly advertises their

sandboxing, safe browsing and auto-update

feature. Most of our approaches were done

through examining Chrome’s current design and

trying to find a loop-hole or a bypass through

their design. This report will focus on the

following five security features; popup blocker,

JavaScript blocker, sandboxing, safe browsing,

and auto update. We found some events that

were deemed an unintentional behavior for

Chrome, such as the pop-up blocker (JavaScript

is able to pop up a pop-up). The update process

is automated and runs in the background. If

malicious activities were to happen in the

background relating to the update process, the

user may not notice. This is not a secure design

as they’re not questioning assumptions. Google

assumes pop-ups are launched by the body

section of the HTML, and updates will work.

Chrome grants users to turn off all JavaScript

through an option, to stop malicious JavaScript,

but over 75% of websites use JavaScript [6].

This security feature would violate the

psychological acceptability design principal, as

users would not want to turn on this feature as

their website browsing experience would be

hindered by a large amount (Websites like

hotmail will be blocked). Changes will need to

be made if users are not secure or happy. This

analysis is significant because the number of

Chrome users have been steadily growing.

mailto:fious@interchange.ubc.ca
mailto:alfred89@interchange.ubc.ca

EECE 412 2010W

Fig. 1 - This graph shows the growth of Chrome

usage since its release
http://www.webdevelopersnotes.com/articles/chr

ome_usage_statistics.php

Google reported that there are over 70 million

users in May 2010 [5]. Therefore it is very

important to study the security implementations

that are protecting these users.

II. ANALYZED SYSTEM

Google Chrome on default enables their Safe

Browsing feature. With Safe Browsing turned

on, a warning will appear whenever the user

visits a suspected website containing phishing

and/or malware [1]. There are a total of five

different warnings depending on the detected

website:

An example is shown in Figure 2.

Fig. 2 - Warning: Phishing Site

“If [Google] finds a website that looks like it’s a

phishing page, it gets added to a list of suspected

phishing websites” [2]. Websites that

comprehend potentially malicious activity will

be tested on a virtual machine on Google’s side.

Certain events will be monitored, such as viruses

being installed, and if the check finds an event

did occur, the website “will be added to a list of

suspected malware-infected websites” [2].

For Safe Browsing to operate properly, Chrome

downloads a list of information about websites

that may contain malicious software or engage

in phishing. The list does not contain the full

URL of suspicious websites. Rather, each URL

is hashed with SHA-256 and truncated to the

first 4-bytes [1],[3]. This design saves space and

bandwidth of users. The downloaded data comes

in the form called a chunk. There are two types

of chunks, add and sub chunks. Add chunks

contain new hash prefixes for the client to match

against, while the sub chunks tell the client to

disregard particular hash prefixes from an add

chunk. Sub chunks allow false positives to be

removed from the blacklist.

This data design grants the client to download

the blacklist incrementally, and gives the

sending-server flexibility in deciding which

chunks to send first. Each chunk belongs to a

particular list. Chrome performs an update

request to get the new blacklist data from the

server every few minutes [3].

As the user browses the Web, each URL is

hashed and truncated, then compared to the

partial-hashed list the browser downloaded.

Each website is represented as host-suffix / path-

prefix expressions.

 Ex.

"http://www.host.com/service/login.html",

the expressions "host.com/" and

"host.com/service/" would both be expressions

[3].

Each expression is hashed and a 4-byte hash

prefix of the expression is generated, and then

compared to the downloaded blacklist locally
[3]. Collisions alone aren’t sufficient to block

the URL, thus the browser will contact Google’s

server to get the full, specific URL (full 32-byte

hash) of the website page. Chrome can then
determine if the user is visiting a risky website,

and warn the user about it [1][2].

Google Chrome’s Sandboxing feature isolates

each new tab into processes. This allows each

website to run faster, and also prevents

JavaScript from communicating between Tabs.

It also helps boost reliability of the browser. As

explained on Chrome’s website, “if an

http://www.webdevelopersnotes.com/articles/chrome_usage_statistics.php
http://www.webdevelopersnotes.com/articles/chrome_usage_statistics.php

EECE 412 2010W

individual tab freezes or crashes, the other tabs

are unaffected [7].”

The pop-up blocker feature can be turned off or

on in Chrome’s options; same with JavaScript

blocker. With these turned on, pop-ups should

not appear and websites containing JavaScript

should not operate as intended.

III. RELATED WORK

We have found many articles online that
analyzed Google Chrome but none focused

much on the security of the browser. Also, these

articles are all outdated, as most of them were
written in September of 2008 to introduce the

browser when it was first released. We did find

one security article that addresses an update

issue.
In this article, the author from PC Magazine,

Larry Seltzer, addresses the issue of Chrome

performing updates without the user’s consent,
and also how the feature can’t be turned off. He

also states that “the program is stored in a user-

writeable directory” [4]. However he did not

provide any solutions and this is what our report

will address.

We did not find any more articles about
Chrome’s pop-up blocker, JavaScript blocker,

safe browsing, and sandboxing. This report will

be addressing something that has not been
focused on before. The behavior of other

browsers in a similar situation will not be

covered in this document.

IV. ANALYSIS

IV.1.0 Safe Browsing Update Process

Chrome checks for updates regularly in the

background while the browser is in use. In the

update process, the client contacts the Safe

Browsing server via HTTP and sends a list of all

the chunks the browser has [3].

Ex.

goog-malware-shavar:a:1-30,42

goog-malware-shavar:s:5-15

This means the client has all the goog-malware-

shavar add chunks between 1-30, inclusive, and

chunk 42. It also has sub chunks 5-15. If the

client wants data for a list, but does not have any

chunks for it yet, then the request will just

include the list name

Ex. Googpub-phish-shavar:

The response for the update request does not

hold new chunk data for the client, but contains

a series of redirected URLs (which include new

add and sub chunks) for the client to download.

Using this design, it allows the data to be stored

on proxy servers, which is not true if the update

response held the data. As mentioned, the client

will fetch each redirect URL and store the results

in its local database (update response may

instruct the client to delete chunks too). Both the

“update response and redirect URL data are

signed by the server, using a key that the client

has previously obtained. This allows “the client

to authenticate the source of the data, and detect

whether it has been tampered with” [3]. Figure 3

depicts the update process.

Fig. 3 - Update Process, taken from [3]

IV.1.1 Block Update Request

Chrome is installed in a directory where the user

has full write access [4]. Chrome is able to

perform updates without any UAC (User

Account Control) prompts. Using Microsoft

Network Monitor 3.4, it was able to track

EECE 412 2010W

exactly what Chrome was doing. Figure 4 shows

an example of Chrome auto-updating.

Fig. 4 - Packet Sniffing Chrome

An adversary, after gaining access to your HTTP

packets, could block update requests without

you knowing anything is wrong. Figure 5 shows

explicitly which part of the flowchart would be

blocked.

Fig. 5 - Blocking Update Request

IV.2.0 Hash Retrieval

Looking back at downloaded blacklist of URLs

stored in Chrome. The browser requests for a

full 32-byte hash whenever a local collision with

an expression from the visited URL is matched

with a blacklisted hashed expression. Figure 6

shows a diagram of how it works.

Fig. 6 - Looking Up a URL, taken from [3].

Similarly to their update process, the request for

the hash lookup may be blocked, and Chrome

will venture into websites that should have

otherwise been verified as a risky website.

IV.3.0 Sandboxing

Google Chrome’s Sandboxing feature isolates

each new tab into processes. However, a work

around for this feature caused the whole system

to crash. To do this, a pop-up window in

JavaScript is created that keeps moving its

location around the screen. We used an endless

loop that constantly changes the x, and y

coordinates and calls JavaScript's

"moveTo(X,Y);" function. This function moves

the popup window to point x and y. When the

user clicks on a link, a troublesome window will

pop up thereby creating two tabs. The popup

will then draw significant amounts of CPU

usage. As the user tries to resume using Google

Chrome, the popup window will cause both tabs

to crash, and the user then has to restart the

application.

EECE 412 2010W

Fig. 7 - This image shows how we managed to

crash 2 tabs with a malicious pop-up window
Hence we were able to work around Google

Chrome’s sandboxing feature, as opening one

tab caused it to affect another tab.

IV.4.0 JavaScript

Google Chrome protects it’s users from
malicious JavaScript by disabling it. However,

this defense mechanism violates the design

principle of psychological acceptability.

Fig. 8 - Percentage of JavaScript Users for top

10000, 100000, and Million sites from recorded

on BuiltWith.com and Quantcast Top Million[6]

This table gives an estimate as to how much

percentage of websites on the internet uses

JavaScript. Hence it shows that a user, who has
JavaScript blocker enable, will be unable to

properly access more than 75.25% of the

websites on the internet.

IV.5.0 Pop-Up

We have been using Chrome for the past few

months and we realized that some websites still
had popup windows even when we enabled the

popup blocker. Therefore we looked into the

functionality of the popup blocker. We tried to
implement a popup, by adding this line of code

in the body portion of a website:

<body
onLoad="window.open('http://www.example.co

m')">

We found that it does not work. The <body
onLoad=> part also cannot call other JavaScript

functions to resize or hide the window.

Therefore we concluded that Google Chrome

disabled the body portion of the HTML code
from calling any JavaScript functions. It also

blocks hyperlinks from automatically opening a

new window. However, we also tried to see if

this blocks hyperlinks from opening new
windows with JavaScript by adding this to the

hyperlink code:

onclick="javascript:window.open”
We found that this can bypass the pop-up

blocker and a new window will still be opened.

Hence this shows that there is a flaw in the
blocker as it does not stop all pop-ups from

opening.

V. RESULTS

Through our trials, we were able to acquire

several results. We were able to bypass the pop-

up blocker by calling JavaScript’s window.open

function in the hyperlink portion of the HTML

code.

Using Fiddler2, we were able to track Chrome

when it’s updating or retrieving hashed URL

from Google’s servers. Auto-responding to those

hashed provided Chrome to operate as if nothing

ever happened (no update request nor hash

retrieval request).

V. DISCUSSION

Even after determining that pop-ups could still

pop-up after the pop-up blocker being enabled,

there is no serious security flaw. This may

violate the psychological acceptability of users,

but pop-ups are easily dealt with by closing them.

A suggestion would be to disallow the HTML

code in a hyperlink from calling JavaScript

functions, similar to what they did with the

<body>portion of the code, which blocked

possible pop-ups to be opened.

For JavaScript blocking, instead of blocking all

websites, a suggestion would be to introduce a

blacklist of bad sites, and turning off JavaScript

on those sites. However, if a blacklist were to

appear, the update process would need to be

considered.

EECE 412 2010W

Unfortunately, more time could and should have

been spent in the analysis and experimenting

with blocking HTTP communications between

Chrome and Google’s servers. This includes the

update process and the looking up of an URL

when a collision appears in the browser’s

blacklist. Since these processes happen in the

background without the users consent, the user

has to assume they’re being protected without

knowing if they’re truly protected. This would

violate the fail-safe default principal. The user

would not be safe if updates were blocked.

Research on the adversary getting access to the

user’s computer and network needs to be done.

Rogue access points could be a viable entry

point. A suggestion would be to notify the user

and/or receive their consent similar to Windows

7 auto-updates. Tell the user their client is out-

of-date, and allow them to choose to download

updates or not, instead of running updates

obviously to the user in the background. As long

as the notification is persistent enough, but not

annoying to users.

VII. CONCLUSION

Google Chrome is used by millions of users and

this number is growing every day. Any security

vulnerabilities would significantly affect these
people and Google’s reputation.

From our analysis, we are able to conclude that

Google Chrome is a relatively safe browser to
use. If an adversary or malicious program were

to infiltrate the user’s computer, Chrome users

will receive minimal hints to an alternation of

Chrome’s update process and hash retrieval of
blacklisted URLs. Although the JavaScript

blocker violates Psychological Acceptability

principle, it does not make the system
vulnerable to attack if activated. However, we

did by pass the pop-up blocker and this shows

that the system is not perfect. Since the system

is not perfect, we have reason to believe that it is
possible that there are security vulnerabilities

that have yet to be exploited.

ACKNOWLEDGMENT

We would like to thank Google, the Google

Chrome Team, and the Chrome community for

making a browser with modern flare.

Documentation of the design was very helpful.

Special thanks goes to EECE 412 Professor, Dr.

Konstantin Beznosov and teaching assistant,

San-Tsai Sun, for giving suggestions towards

this project.

REFERENCES

[1] Google. “Privacy and security settings:

Phishing and malware detection” (2010)

[Online] Available:

http://www.google.com/support/chrome/bin/

answer.py?hl=en&answer=99020

[2] Ian Fette. “Understanding Phishing and

Malware Protection in Google Chrome”

Google. (2008-11-14) [Online] Available:

http://blog.chromium.org/2008/11/understan

ding-phishing-and-malware.html
[3] Brian Ryner, Noe Lutz. “SafeBrowsing

Design” Google. (2009-11-16) [Online]

Available: http://code.google.com/p/google-

safe-browsing/wiki/SafeBrowsingDesign

[4] Larry Seltzer. “Google Chrome’s Security

Practices Raise Eyebrows” PCMAG.COM.

05-18-2009 [Online] Available:

http://www.pcmag.com/article2/0,2817,2347

216,00.asp

[5] Leena Rao. (2010-05-19). “Google I/O:

Chrome Now 70 Million Users Strong”.

TechCrunch. Available:

http://techcrunch.com/2010/05/19/google-io-

chrome-now-70-million-users-strong/

[6] Trends, BuiltWith. “Javascript Usage

Statistics” (2010-11-30) [Online] Available:

http://trends.builtwith.com/docinfo/Javascrip

t

[7] Google. “Google Chrome Features”. (2010)

[Online] Available:

http://www.google.com/chrome/intl/en/more

/features.html

http://blog.chromium.org/2008/11/understanding-phishing-and-malware.html
http://blog.chromium.org/2008/11/understanding-phishing-and-malware.html

