

Abstract—This paper compares the usability of Access Control

List (ACL) among two operating systems, Windows XP

Professional and Fedora Core 2 SELinux, based on experiments.

20 test subjects are asked to set up the ACL for a list of files

according to a pre-made scenario. Results show that most

participants are unable to utilize ACL correctly; therefore, they

create potential data confidentiality and integrity issues.

Moreover, Linux is found to be a more efficient in configuring the

ACL as compared to Windows.

Index Terms—Access Control List

I. INTRODUCTION

HE PURPOSE of this paper is to examine the usability of

ACL in Windows XP Professional and Fedora Core 2

SELinux operating systems. ACL is a powerful security

mechanism that allows user to maintain the confidentiality and

integrity of data. The implementation of ACL in operating

systems is very secure since they are integrated into the

operating systems at the developing stage. However, users of

ACL can introduce vulnerabilities into the system by

incorrectly setting the access control entries. As stated by

Cranor and Garfinkel, when the objective is to maintain

privacy, usability plays a very important role in the system [1].

Therefore, it is important to determine the usability of access

control lists in different operating systems.

II. EXPERIMENT METHODOLOGY

The purpose of the experiment is to analyze and compare the

usability of ACL on Windows XP Professional and Fedora

Core 2 SELinux with respect to accuracy, task completeness,

and completion times. The actual results will also compare to

the intended security goal.

A. Scenario

 The test subject will be a Hardware Engineer in company

called ACL Group. The participant will try to configure the

ACL for each file or folder to grant access to other staff within

the company. The goal is to prevent any unauthorized access

or modification to all your personal files.

 The company consists of fourteen people and eight different

positions. Hugo, the Boss of the company, hired two Project

Managers, Leo and Cindy, to lead one project team each. In

each project team, there is a Design Engineer, a Requirement

Engineer, and a Hardware Engineer. The test subject will be

the Hardware Engineer for Team 1. An Assistant Manager,

Nelson, is switched between the two project teams and

provides help when necessary. Jen, the Accountant of the

company, is responsible for using the budget list to do

accounting. Three Technicians, Peter, David, and Kosta are

responsible for parts ordering for engineers from both teams.

 There are a total of 7 files that the test subject needs to share

with and protect from other employees. These 7 files are

grouped into 3 folders: the Design Document folder, the

Progress folder, and the Finance folder. The Design Document

folder contains schematics and PCB layouts of the company’s

design. The Progress folder includes meeting summary,

personal schedule, and progress reports. The Finance folder

consists of both the company’s budget list and part ordering

list. These files are not accessible to everyone in the company,

for example, the Boss, Hugo, can only view the company’s

design documents while Project Manager Leo can both view

and make changes to them.

B. Test Subjects

 A total of 20 test subjects are involved in the experiment.

All test subjects are students from various faculties including

Arts, Biology, Commerce, Dentistry, Engineering, and

Forestry. Their ages ranged from 20 to 28. All 20 test subjects

had some experience with Windows XP, and four test subjects

have used Linux operating systems before, but only two are

experienced. None of all 20 test subjects understood ACL

prior to the experiment.

C. Test Subject’s Assistance

 To help test subjects become familiar with the two different

operating systems, a brief tutorial is provided before the

experiment is conducted. Since most participants are

Windows based users, a Linux oriented tutorial is given.

Windows and Linux ACL configurations differ significantly;

Windows relies heavily on its user friendly graphical layout,

while Linux requires command inputs from the user via the

terminal. Since most participants do not have any

programming background, understanding Linux commands

and their syntax becomes an issue. Based on the test subject’s

knowledge of Linux systems, the appropriate amount of

assistance on useful Linux commands such as setfacl, getfacl, -

-help, and man, is given.

 Before the experiment begins, all rights for each file were

denied (default setting). The test subjects were then given time

to read through the scenario and role description documents.

No assists were given during the first ten minutes. If the test

subjects cannot figure out where to start after ten minutes,

hints and guides were then provided to assist them. Each test

subject had a one hour time frame to complete the tasks for

each operating system.

 After the one hour period, the modified ACL’s were

recorded and compared with the correct answers. They were

then restored back to their default setting for the next test

subject.

Access Control List in Operating Systems

E. Law, S. Shek, K. Wong, and C. Zhu

T

III. HYPOTHESIS

 There are two main objectives to be achieved in the

experiment. The first involves determining the usability of

access control lists in general. The second objective is to

compare and analyze the usability and complexity of access

control lists in two operating systems, namely the Microsoft

Windows XP Professional and the Fedora Core 2 SE (Security

Enhanced) Linux. The data collected from the 20 test subjects

will be used to reach these objectives.

Before any experiment was conducted, the following

hypotheses were made:

1. Current access control lists incorporated into modern

operating systems have low usability. In order to protect

files within a system, one must need to grant permission

levels to other users for every file. This process becomes

quite cumbersome, complicated, and time consuming as

the set of files and users increase.

2. Windows ACL is less prone to mistakes by users. Since

the Windows operating system is more widely used by

home users, participants should be more comfortable and

familiar with a Windows environment. Linux ACL

requires a series of command input to set up the ACL;

therefore, participants may find it confusing and may be

unable to complete the task within the one hour time

frame.

IV. RESULTS

To determine the usability of ACL in both Windows and

Linux, twenty test subjects are gathered to do an experiment

based on the scenario. The results are separated into two

categories: quantitative and personal comments. Using these

results, the usability of ACLs in both operating systems will be

measured based on accuracy, test completion time and test

subjects’ comments.

To increase diversity, the test subjects are chosen from

different faculties. Figure 1 below shows the percentage of the

test subjects in different faculties:

Distribution of Test Subjects to Faculty

5, 25%

2, 10%

3, 15%

10, 50%

Engineering

Computer Science

Science

Art

Figure 1. Distribution of Test Subjects to Faculty

The numbers beside the percentage values are the number of

test subjects in that specific faculty. To truly test usability,

most test subjects are chosen from the Arts faculty to reflect

the large percentage of Arts students in the real world. This

consideration is also taken into account when choosing

students from other faculties.

Among the test subjects, Alvin and Rosita are in Computer

Science and are very experienced in Linux Systems. In

addition, there are two former EECE 412 students, Claudia

and Ivan. They both have sufficient knowledge on computer

security issues.

Quantitative results

A. Accuracy

In this experiment, accuracy is determined by counting the

number of test subjects who can produce the ACL within 95%

correctness. This shows if the test subjects are able to use the

options provided by the operating systems correctly. Figure 2

below compares the correctness of test subjects in relation to

the two operating systems.

Linux and Windows Test Results

0

20

40

60

80

100

120

fail to

complete test

completed the

test

close to

answer key

wrong

answers

p
e
rc

e
n
ta

g
e
 (
%

)
 s

s

Linux

Windows

Figure 2. Linux and Windows Test Result

In the chart, the x-axis represents different categories of

correctness while the y-axis represents the percentage of test

subjects. The chart shows that the ACLs created on Linux are

more accurate than the ACLs on Windows: 40% of the total

test subjects have created the correct ACLs, while only 25%

correctly configured ACLs on Windows. From these results, it

is obvious that test subjects have a higher chance of

configuring a correct ACL on the Linux than on the Windows

system.

Figure 3 and 4 below show the distribution of the faculties

of test subjects who correctly configured ACLs on Linux and

Windows systems. According to the pie chart, 50% are

Engineering students, 25% are Computer Science students, and

12.5% for both Art and Science students. A result of interest is

that both Computer Science students with extensive Linux

experience are able to complete the ACL with precision.

Faculty of Test Subjects Who are Correct on

Linux

2, 25%

1, 12.5%

1, 12.5%

4, 50%

Engineering

Computer Science

Science

Art

Figure 3. Faculty of Test Subjects Who are Correct on Linux

Faculty of Test Subjects Who are Correct on

Windows

3, 60%1, 20%

1, 20%
0, 0%

Engineering

Computer Science

Science

Art

Figure 4. Faculty of Test Subjects Who are Correct on Winodws

B. Test Completion Time

Test completion time tests how much time it takes a participant

to finish creating all ACL entries on each operating system. It

reflects the user-friendliness of the user interfaces on the two

operating systems. Figure 5 below shows the test completion

time for both operating systems:

Test Completion Time for Linux and Windows

0

10

20

30

40

50

60

70

B
ill

y

J
e

n
n

if
e

r

A
lv

in

M
ic

h
e

lle

R
o

s
it

a

C
h

ri
s

ta

C
la

u
d

ia

A
le

x

S
te

p
h

e
n

T
im

o
th

y

V
e

ra

Iv
a

n

G
o

rd
o

n

P
h

ili
p

B
ri

a
n

G
lo

ri
a

L
ik

-Y
a

n

J
a

s
o

n

Iv
a

n

V
it

o
ri

a

A
v

e
ra

g
e

 T
im

e

ti
m

e
(m

in
u

te
s

)

Linux

Windows

Figure 5. Test Completion Time for Linux and Windows

The x-axis is categorized into different test subjects and the y-

axis represents the time in minutes. According to the graph, the

test completion time of every participant on Linux is much

higher. The average time for Linux is around 40 minutes, but

the average time for Windows is only around 31 minutes. The

difference between the two operating systems is obvious.

However, for Rosita and Alvin, the two Linux experts, they

only spent approximately 22 minutes on the Linux test.

Because they know all the necessary commands for Linux, no

time was wasted on figuring out the appropriate commands

and syntax.

Test Subjects’ Comments

The last category, which is test subjects’ personal

comments, represents test subjects’ satisfactory level towards

the ACL on these operating systems.

For Linux ACL, almost all the test subjects claimed that

they spent most of their time on finding the correct commands

to use; however, once they are familiar with the commands, the

progress is much faster than before. Because most of the test

subjects do not have much knowledge with Linux, they needed

a sufficient amount time to get used to the controlling

environment of Linux.

As for Windows, although all the test subjects are familiar

with its interface, they encountered several problems when

modifying the ACL. They stated that the ACL interface is

confusing and complicated; setting one ACL entry for one file

involves traversing through multiple windows, adding users to

a list, and then granting permissions to those users. In addition,

they are often confused about the distinction between some

permission levels, namely “read” and “read and execute”.

V. DISCUSSION AND OBSERVATION

A. Analysis of Results and Hypotheses

 Using the results obtained from the experiments, initial

hypotheses can be reassessed.

1) Usability of ACL

The first hypothesis states that current access control lists in

modern operating systems have low usability. It can be

concluded that this theory is fairly accurate, given the low rate

of users successfully completing the experiment with a high

degree of accuracy. Of the 40 experiments conducted, there

are only 13 instances where all access control lists are

configured to achieve 95% or higher correctness. This

translates into a 32.5% success rate, a percentage way below

the standard for a system to be recognized as usable.

 There are several reasons for the low usability of access

control lists. The scenario the experiment is based on is neither

complex nor simple; 13 users in a company is a reasonably

small number, whereas home users might never have the need

for more than four accounts. However, due to the inexperience

of our test subjects on access control lists, the scenario is quite

complex and sometimes even difficult to comprehend.

2) Comparison of Windows and Linux

The second hypothesis states that Windows ACL is more

usable. However, this is inconsistent with the results obtained

from the experiments. Out of the 20 test subjects, 8 configured

the ACL in Linux to within 95% accuracy, while only 5 test

subjects were able to achieve that level of accuracy by using

Windows. Considering the fact that only 10% of all test

subjects are experienced at Linux, it can be seen that Linux

ACL is definitely more usable than Windows. Although the

average time for completion is higher for Linux, it does not

mean that the access control lists in Linux systems are less

usable; this is analyzed and discussed in a later section.

B. Linux

Results have shown that all test subjects on average require

ten extra minutes to set up the ACL for Linux. This is due to

the fact that most test subjects spend at least 20 minutes

understanding and becoming comfortable with Linux

commands, syntax, and the overall environment. Once the test

subjects are familiar with the command, they are able to

configure the ACL much more efficiently than by using

Windows. The following features implemented in Linux

contribute to this efficiency advantage over Windows:

1. Test subjects are able to add or remove user permissions

with one simple line of command via the terminal.

Compared to Windows, this approach decreases the setup

time significantly by avoiding multiple levels of user

interfaces.

2. The terminal is capable of storing a history of previous

input commands. Test subjects can simply recall any

previous input commands by pushing the up arrow button

on the keyboard. In the test scenario, for setting ACL

entries with multiple users and files, this feature can be put

to use extensively for maximum efficiency. Setting ACL

for a file is done by one command: setfacl –m

u:[username]:[rwx] [filename]. Although a maximum of

three parameters can be changed, typically only one

parameter differs from one command to the next. This

results in a vast improvement in efficiency.

3. Upon completion of the ACL setup, test subjects are able

to review the results in text format by executing the getfacl

[filename] command. The output is clear and simple,

allowing test subjects to check for any mistakes with ease.

As the number of files to be secured in a system increase, the

ACL setup duration changes dramatically. The steps required

to change the Linux and Windows’ ACL is linearly related to

the number of files and users. Each step is defined to be

typing a word or clicking a mouse button. The numbers of

steps in order to complete one ACL entry can be calculated as

follows:

Case 1

Assumptions:

Total number of files (n) = 5000

Total number of users (u) = 20

Linux users are not taking advantage of the history

feature in the terminal.

Windows:

1. Best case scenario: One permission level granted for

 every user to each file

Number of steps

= minimum step per file* number of files + number of

users * number of files * number of permission

changes per user

= 7 * 5000 + 20 * 5000 * 1

= 135000

2. Worst case scenario: Three permission levels granted

 for every user to each file

Number of steps

= minimum step per file* number of files + number

of users * number of files * number of permission

changes per user

 = 7 * 5000 + 20 * 5000 * 3

 = 335000

Linux:

1. Best case scenario: Same permission granted to all users

for every file

Number of steps

= (minimum step per user + number of files) *

number of user

Minimum step per user includes: setfacl –m u: [user] :

[permissions]

= (5 + 5000) * 20

= 100100

2. Worst case scenario: Six combinations of permissions are

evenly distributed

Number of steps

Given:

There are totally six kinds of rights: r, w, x, rw, rx, rwx

Therefore, the probability of each kind of rights,

P(rights) is 1/6.

= ((number of files * P(rights) + minimum step per

user) * total number of rights) * total number of

users

= ((5000 * (1/6) + 5) * 6 * 20)

= 100600

As shown in Figure 6 and 7, Windows requires a growing

number of steps to configure ACL than Linux as the number of

files increases. In both cases, the number of steps required to

change the ACL on Linux is much lower than on Windows.

Best Case Scenario for Setting Up ACL in Linux and Windows

with 20 users and 5000 files

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15
x 10

4

Number of Files

N
u
m

b
e
r

o
f

S
te

p
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15
x 10

4

Windows

Linux

Fig. 6. Number of steps is as a function of number of files. As the number of

files go up, Linux require less time to configure ACL than Windows.

Worst Case Scenario for Setting Up ACL in Linux and Windows

with 20 users and 5000 files

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4
x 10

5

Number of Files

N
u
m

b
e
r

o
f

S
te

p
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2
x 10

5

Windows

Linux

Fig. 7. Number of steps is as a function of number of files. As the number of

files increases, Linux require much less time to configure ACL than

Windows.

Case 2:

Assumptions:

Total number of files (n) = 5000

Total number of users (u) = 200

 Calculation is the same as case one

Case 2 reiterates the calculations done in Case 1, but with an

increase in the number of users. Figure 8 shows that the

performance of Linux and Windows are almost identical in the

best case scenario. However, as shown in Figure 9, Linux is

more efficient in the worst case scenario, even as the number

of users increases.

Best Case Scenario for Setting Up ACL in Linux and Windows

with 200 users and 5000 files

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12
x 10

5

Number of Files

N
u
m

b
e
r

o
f

S
te

p
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12
x 10

5

Windows

Linux

Fig. 8. Number of steps is as a function of number of files. When the

number of user increases, the step requires to setup ACL is almost the same in

the best case scenario.

Worst Case Scenario for Setting Up ACL in Linux and Windows

with 200 users and 5000 files

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4
x 10

6

Number of Files

N
u
m

b
e
r

o
f

S
te

p
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2
x 10

6

Windows

Linux

Fig. 9. Number of steps is as a function of number of files. In the worst case

scenario, even when the number of user increases, Linux requires much less

steps to achieve.

C. Windows

The experiment showed that users get acquainted with

Window’s ACL quicker than Linux. This is due to the fact

that there are no commands to learn; all commands and actions

are shown explicitly on the graphical interface. The help

documents are also very well structured, with easy to navigate

menus and hyperlinks.

 The set of permission levels in Windows ACL is also

greater than those in Linux. In simple mode, there are six

permissions: modify, read, write, read and write, execute, and

full control. Having these extra options allow the users more

flexibility when setting the ACL entries.

 Compared to Linux, setting the same permission levels of all

files and subfolders in a folder can be done easily in Windows.

When permissions are granted to a folder, the permissions are

also applied to all files and folders in the folder hierarchy.

However, there is a major downside to the Windows ACL.

The process of setting up access control lists is more complex

and requires additional time for completion. Since Windows’

graphical interface aims to achieve high user friendliness, a

limited set of action and commands are given to each window

for simplicity. This also means users must traverse through

more windows before reaching the intended destination. In

addition, users must manually add other users to a file before

granting them permissions. Both of these factors contribute

greatly to the fact that setting up ACL on a Windows machine

consumes more time.

VI. POSSIBLE DEVELOPMENT

From the results obtained from the experiment, it is safe to

conclude that the usability of ACL in Linux systems is

considerably higher than ACL in Windows. The

implementation and user interface of ACL in Fedora Core 2 is

by no means flawless; indeed, it can be said that much

improvements can still be made to improve usability.

A. Documentation

 Better documentation accessibility and layout will

dramatically reduce the learning time for novice users. Linux

comes with a large set of very detailed and technical

documentation [2]. However, to access these documentations,

users must first be acquainted with the commands for

displaying these documentations. There are two commands

that are of use to novice Linux users: “--help" and “man

[command]”. On most modern Linux operating systems, when

a user incorrectly uses a command due to syntax error, the

terminal automatically displays the help menu. The help menu

is quite short and uninformative; the manual contains much

more variety of information, including technical details and

real examples on how to use the specific commands and

options associated with that command. A simple, effective

way to inform users of the existence of the “man” command is

to include it in the help menu, along with a short description of

what “man” accomplishes [3].

 The manual option for commands is very detailed and

technical, but complaints about the readability and the length

of the documents are frequent during the experiments. The

format of the manual is usually very technical and dull, and the

terminal displays the contents in a command line context.

After browsing through the manual and failing to find the

appropriate material, test subjects in the experiments becomes

uninterested, get frustrated, or get discouraged. One method to

improve the effectiveness of the manuals is by developing a

better graphical layout for the manual. A full blown help and

support center such as the one in Windows may also be

adopted to centralize all help and manuals for easier access.

Such a layout will improve usability of the manuals and help

users find specific sections efficiently.

B. User Interface

 Linux systems rely heavily on a command line interface, as

opposed to a graphical user interface such as Windows

machines. There are many advantages and disadvantages of

operating in a command line interface environment. A

command line interface presents users with more control and

improved speed, and also allows users to easily create scripts

to perform some specific task [4]. In contrast, the major

drawbacks of such an interface are that it sacrifices ease of use

and the ability to multitask.

 Speed and control is achieved by having one-line commands

for simple and complex actions. An advanced Linux user

using the terminal is able to perform complex actions faster

than an advanced Windows user performing complex actions

on Windows systems. This is due to the fact that multiple

mouse and keyboard actions are replaced by one line of

command. The ability to create a script easily also

significantly raises the usability of ACL in Linux systems;

setting the same ACL’s on multiple machines would be a

simple matter of executing a previously created script.

The issue of multitasking is irrelevant in improving the

usability of ACL. However, the ease of use becomes an

important issue for novice users. Novice users often find it

much more difficult to successfully operate a command line

interface due to the memorization and familiarity needed to

operate it. In comparison, graphical user interfaces are much

easier to pick up and learn since the users do not need to

memorize any commands. The actions that can be performed

in a graphical unit are all laid out in the form of tabs, buttons,

and checkboxes.

The analysis above poses some profound questions on how

to improve the user interface on Linux systems. Both schemes

of user interfaces have their own advantages and

disadvantages. The main disadvantage of a command line

interface is its ease of use. To improve ease of use, a graphical

interface can be implemented for setting ACL entries. On the

other hand, this change would completely eliminate the

advantages that command line interfaces deliver. Therefore,

one implementation of an improved ACL is to combine the

two schemes into a hybrid model. This concept involves

integrating a command line interface into a graphical unit.

Based on the user’s experience in command line interfaces,

they may choose to use the graphical section of the unit first.

The specific commands corresponding to the user’s actions is

shown in the command line section. In another word, the unit

acts as a translator between actions performed on the GUI and

specific commands.

Once an ACL entry is created by interacting with the

operating system through the graphical unit, the corresponding

“setfacl” command and syntax would be outputted onto the

command line section. For further assistance, users may

choose to select an option which explains the syntax and

options of that command. Such an option will significantly

reduce the learning time for novice users, since it frees user of

the task of reading through the manual.

Fig. 10: Hybrid Interface for ACL

C. Access Control Options

 On Linux machines, there are only three permission options:

read, write, and execute. On Windows, there are six

permissions: full control, modify, read and execute, read, and

write. This unnecessarily complicates the process of

configuring access control lists; the options of read, write, and

execute are more than enough for most purposes.

 In addition, test subjects sometimes assume that giving a

user some permission to a folder will grant that user the same

permission to every file and subfolders. Therefore, a useful

option is to prompt the user and let the user choose to whether

to set all files in the folder hierarchy to the same permission as

the folder. For some applications, this option will improve

usability by improving speed and efficiency.

REFERENCES

 [1] L. F. Cranor and S. Garfinkel, “Security and

Usability,” O'Reilly, pp. 634-637, August 2005

[2] Scorpion City (2001, Feb.21) Linux Tutorial. [Online].

Available: http://www.scorpioncity.com/linux.html

[3] J. Valade, “Spring Into Linux,” Addison Wesley

Professional, pp. 245-256, April 25, 2005

[4] Computer Home (2005, Dec 1) Command Line vs GUI.

[Online] Available:

http://www.computerhope.com/issues/ch000619.htm

