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Abstract—In this paper we analyze DEVCC, the most 

commonly referenced implementation of covert channels using 
steganography in TCP timestamps. We identify detectable 
patterns in the timestamps such as an abnormal frequency in the 
least significant bit (LSB) of 5:3 ones to zeroes, and 
autocorrelation that does not parallel normal TCP traffic, in 
particular one-bit autocorrelation of 0-0 and 1-1 pairs being 
unequal, and propose multiple alternative transmission 
algorithms in the hopes that they not only improve upon DEVCC 
but that they are also useable in real-world scenarios. Finally we 
analyze DEVCC and each alternative to support the strength of 
the best of these alternatives, showing that they show far less 
abnormal patterning than DEVCC, and we find that three 
proposed algorithms are statistically indistinguishable from 
normal TCP/IP traffic in low-bandwidth situations. 
 

Index Terms—Computer security, covert channel, 
steganography, TCP timestamp. 
 

I. INTRODUCTION 

HE need for hiding the existence of data transmission is 
often overlooked as maintaining the secrecy of visible 

transmissions is focused upon. However, simply hiding the 
contents of a message can be insufficient; in some cases, 
simply knowing that information was sent is revealing too 
much data. Scenarios such as a political blogger who wishes to 
remain anonymous or a governmental spy who does not want 
to be exposed are immediately obvious; for the former, 
detecting encrypted file uploads at times that posts were made 
would be a strong signal, and for the latter even sending 
encrypted data at all might draw too much attention. 

The solution is to hide the very transmission of data using a 
covert channel. A covert channel is deemed useful if it is 
practically undetectable when used. We will not consider a 
channel to have failed if an active warden model can prevent 
transmission, as prevention is not equivalent to detection, and 
is in fact much easier [1]. 

We focus upon the potential channel of timestamps in TCP 
headers. TCP over IP is the most frequently used protocol on 
the internet, and its optional timestamp field is being used by 
increasing numbers of operating systems. Its purported 
purpose is to allow hosts to accurately calculate round trip 
times (RTT) and to prevent sequence number (SEQ) 
wraparound difficulties [2]. We chose this channel because of 
its ubiquity and because there seems to be less published 

 
 

material on it compared to media such as images and sound. 
 It should be noted that to embed covert data we must delay 
packets. We cannot simply reduce their timestamps, since it is 
often trivial to detect packets being sent 10ms (the granularity 
on of a Linux system clock) after their timestamp. 

Other techniques to use sections of TCP packets as covert 
channels have been presented. Type-of-Service channels flip 
bits in rarely-used fields of the header, but are trivial to detect 
precisely because these fields are rarely used, and even more 
rarely changed mid-stream [2]. The initial sequence number 
field, or ISN, can be used as well, but it can send at most four 
bytes per connection (not per packet), and undetectable 
versions must send significantly fewer than this [2]. Other 
methods exist, but are also detectable, as described in [3]. 
Mechanisms for embedding a channel at a lower level [2] have 
been proposed, but as these are unusable in an even mildly 
complicated network, their usefulness is diminished. 

The only implementation of covert channels over TCP 
timestamps that we were able to find is DEVCC. “It is a 
protocol for sending data… at a rate of one bit per packet” [4]. 
It chooses  which plaintext bit to send using a hash of the SEQ 
(which for our consideration can be effectively considered a 
unique number assigned to each packet). It determines a 
cypherkey using a hash of the timestamp (without its LSB) 
and SEQ. The cyphertext bit is the xor of the cypherkey and 
the plaintext key, and so if necessary it delays the packet to get 
the appropriate LSB as cyphertext. If a higher order bit is 
changed by this delay it begins calculations again. 
Unfortunately this recalculation leads to easily detectable 
patterning in all traffic conditions. In addition, timing 
characteristics caused by delaying half of all packets by 10ms 
forms a strong fingerprint – so strong that watermarking 
schemes have been proposed which do almost exactly this [5]. 
The data is recovered from the resulting packet in a symmetric 
fashion by the receiver. 

We have implemented four alternative algorithms for 
manipulating TCP timestamps. The first algorithm is 
effectively half DEVCC, half normal traffic, as it simply 
generates a pseudorandom bit from the packet header and 
decides, based on that, whether or not a data bit should be 
sent. 

The second algorithm is also a variant of DEVCC. It 
decreases the chance that a recalculation is needed by using 
fewer bits of the timestamp during the cyphertext calculation. 

The third algorithm reduces the randomness of the 
cypherkey by ignoring the timestamp during its generation. 
 The final algorithm simply computes a hash of the entire 
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packet header, including all the bits of the timestamp, and if 
the LSB of the hash is the cyphertext LSB it is sent. 

As will be seen below, each of the bit-encode algorithms 
will also decode correctly because they are symmetric. For 
brevity the decode steps will not be explicitly listed. 

II. POTENTIAL AREAS FOR IMPROVEMENT IN DEVCC 

A. Algorithm 
DEVCC’s sending algorithm is as follows: 
 

DEVCCENCODEPACKET(Packet P, TimeStamp T) 
  GetHeader(P) → PacketHeader 
  GetSeqNum(PacketHeader) → SequenceNumber 
  SHA1(SequenceNumber) → Index 
  SHA1(PacketHeader, T & 0xfffffffe) → KeyBit 
  MessageBlock[Index] → PlainTestBit 
  PlainTextBit ⊕ KeyBit → CipherTextBit 
  If T[0] ≠ CipherTextBit then 

T + 1 → T 
If T[0] = 0 then 
  Return DEVCCEncodePacket(P,T) 
End if 

  End if 
  SendPacket(P,T) 
 

Figure 1: DEVCC embedding algorithm 
 

As discussed in the introduction, this uses a hash of the SEQ 
to choose the plaintext bit, it uses a hash of the SEQ and the 
timestamp to get a cyphertext bit, and if the current timestamp 
does not have a matching LSB it delays one tick and 
recalculates. A full discussion of the algorithm can be found in 
[2]. 

B. Areas Open To Improvement 
The DEVCC algorithm contains a serious flaw in any traffic 

conditions: it will transmit far fewer 0s than 1s in LSBs. When 
the LSB is 0, it has .5 odds of remaining a 0 or of becoming a 
1. In no case does it become a 0 again, as it busy-waits in the 
kernel where it cannot be preempted. When the LSB is a 1, it 
also has .5 odds of remaining a 1 and .5 odds of being 
increased. When it is increased, however, the second-to-least 
significant bit is modified, and the cypherbit is recalculated 
based on new parameters, with even odds of being a 0 or 1. 
Therefore an original LSB of 1 has .75 odds of having a 
cypherbit of 1 and only .25 odds of having a cypherbit of 0. 

A simple frequency analysis shows this plainly, with a 0s:1s 
sent-LSB ratio of .75:1.25, or 3:5. In traffic that is even mildly 
bursty (two-packet bursts are enough) this will be evident. A 
one-bit autocorrelation test will also reveal the discrepancy 
immediately if a sample of high speed traffic is taken, as 
normal traffic has equal odds for the case of an LSB of 1 
following a 1 and for a 0 following a 0. 

A statistical anomaly in high-speed high-density situations is 
the average number of unique timestamps used versus the 
transmission duration. Normal TCP traffic in these conditions 
is theorized to approach a ratio of 1:1, as each timestamp 

should be used [2]. DEVCC, however, approaches a number 
under .75 due to its need for time delays [2]. 

The number of groups of identical timestamps, by size of 
group, in high speed situations, is approximately exponentially 
decreasing (exponent of ½), whereas normal traffic 
approximately fits a bell curve under the same traffic 
conditions, so this can be used to differentiate the two. 

Finally, under moderately consistent network conditions in 
small time intervals (<< 60,000ms), round-trip-time is 
normally unimodal with a significant spike at the average 
round trip time (RTT). This spike characteristically has a 
width of less than 10ms [6][7]. Because DEVCC delays, on 
average, 3/8 of the packets by 10ms and 1/8 by 20ms, its RTT 
pattern is trimodal, with the second spike roughly half as high 
and the third spike significantly smaller than the first, with a 
10ms gap between each. Because RTT is a Poisson process 
this patterning can be detected independently from 
transmission speed or packet burst patterns. 

III. ALTERNATIVE ALGORITHM: HALF-DEVCC 

A. Motivation 
DEVCC has very detectible patterns; by mixing an even 

amount of regular traffic with the covert channel we hoped to 
make patterning more difficult to observe. 

B. Algorithm 
HALFDEVCCENCODEPACKET(Packet P, TimeStamp T) 
 GetHeader(P) → PacketHeader 
 GetSeqNum(PacketHeader) → SequenceNumber 
 SHA1(SequenceNumber, Constant) → RandomBit 
 If RandomBit = 1 then 
  Return DEVCCEncodePacket(P, T) 
   End if 
   SendPacket(P,T) 
 

Figure 2: Half-DEVCC embedding algorithm 
 

C. Results 
Because this relies on the DEVCC algorithm, it still has 

very noticeable patterns; the LSB ratio has improved but 
frequency analysis on even a short transmission still shows 
something is amiss.  For the same reason, autocorrelation 
reveals an unwanted pattern like DEVCC’s. There is only a 
mild improvement upon its unique timestamp ratio—not 
enough to be undetectable. Unique timestamp count binning is 
substantially closer to normal traffic than DEVCC, but does 
not conform to a normal curve, and so may still be detectable. 
It also obviously requires twice as many packets as DEVCC to 
send a given message, which is a significant drawback. 

IV. ALTERNATIVE ALGORITHM: TIMESTAMP-MASKED 
KEYBIT GENERATION 

A. Motivation 
The frequency problem in DEVCC is a direct result of its 

frequent recomputations of the keybit due to non-LSB bits in 
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the timestamp being changed when the LSB is incremented 
from 1. By reducing the dependency on the lower-order bits of 
the timestamp by masking some out, this rollover problem can 
be reduced. We tested using 4 bits to ignore hoping to 
decrease the problem to 1/16th while ensuring that there was 
still a nontrivial dependency on the timestamp. 

B. Algorithm 
TSMASKEDENCODEPACKET(Packet P, Timestamp T) 
   GetHeader(P) → PacketHeader 
   GetSeqNum(PacketHeader) → SequenceNumber 
   SHA1(SequenceNumber) → Index 
   SHA1(PacketHeader, T & MaskBits) → KeyBit 
   MessageBlock[Index] → PlainTestBit 
   PlainTextBit ⊕ KeyBit → CipherTextBit 
   If T[0] ≠ CipherTextBit then 

 T + 1 → T 
 If T[0] = 0 then 
    Return TSMaskedEncodePacket(P,T) 
 End if 

 End if 
   SendPacket(P,T) 
 

Figure 3: Timestamp-Masked embedding algorithm 
 

C. Results 
As expected, this alternative solved the bit frequency 

problem, being statistically indistinguishable from normal 
traffic. With respect to unique timestamps, the ratio was over 
0.9—higher than our actual measurement of unmodified 
traffic—and obviously improved greatly over DEVCC.  
Unfortunately it does not have timestamp count patterns like 
normal traffic, and autocorrelation on one and two bits reveals 
a distinctly nonstandard pattern. 

V. ALTERNATIVE ALGORITHM: CYPHERBIT INDEPENDENT OF 
TIMESTAMP 

A. Motivation 
Using the timestamp to determine the cypherbit seems to 

introduce many problems; by using the timestamp solely as a 
transmission medium we aim to avoid this. 

B. Algorithm 
TIMELESSENCODEPACKET(Packet P, Timestamp T) 
   GetHeader(P) → PacketHeader 
   GetSeqNum(PacketHeader) → SequenceNumber 
   SHA1(SequenceNumber) → Index 
   SHA1(PacketHeader) → KeyBit 
   MessageBlock[Index] → PlainTestBit 
   PlainTextBit ⊕ KeyBit → CipherTextBit 
   If (T[0] ⊕ CipherTextBit) = 1 then 

 T + 1 → T 
   End if 
   SendPacket(P,T) 
 
Figure 4: Time independent encryption embedding algorithm 

 

C. Results 
This algorithm has a bit frequency pattern indistinguishable 

from normal traffic. Its repeated timestamp binning pattern is 
similar to normal traffic’s, though with a smaller standard 
deviation. For both one and two bits it’s autocorrelation 
patterns are within 1.5 standard deviations of normal traffic, 
often better. 

VI. ALTERNATIVE ALGORITHM: BERNOULLI EXPERIMENT 

A. Motivation 
We wish to treat the embedding of data as a coin-toss so as 

to make it a Bernoulli experiment, in part because it is 
well-suited for theoretical analysis. 

B. Algorithm 
BERNOULLIENCODEPACKET(Packet, Timestamp T) 
   GetHeader(P) → PacketHeader 
   GetSeqNum(PacketHeader) → SequenceNumber 
   SHA1(SequenceNumber) → RandomBit 
   SHA1(PacketHeader, T)→ KeyBit 
   MessageBlock[Index] → PlainTestBit 
   PlainTextBit ⊕ KeyBit → CipherTextBit 
   If RandomBit ≠ CipherTextBit then 

 T + 1 → T 
       Return BernoulliEncodePacket(P,T) 
   End if 
   SendPacket(P,T) 
 

Figure 5: Bernoulli embedding algorithm 
 

C. Results 
Frequency analysis and one-bit autocorrelation tests cannot 

distinguish this from normal traffic. Unfortunately, this 
algorithm still exhibits an exponential decrease in repeated 
timestamp count bins by size. Furthermore, two-bit 
autocorrelation shows small but statistically significant spikes 
where normal traffic has none.  Since it is a Bernoulli 
experiment with .5 probability of usage, its unique timestamp 
to total possible timestamp ratio is 0.5, far below the 
theoretical “good” ratio of 1. 

VII. METHODOLOGY AND DATA 
We inserted one kernel module at a time into a Linux 

system to test each algorithm. The module intercepted 
outgoing TCP packets immediately before they are sent to 
hardware and, if applicable, modifies them before sending 
them to the hardware. We ensured that CPU usage and 
conditions in the surrounding network did not affect data 
collection. 

To provide a suitably hostile environment for testing the 
algorithms, all experimental data was gathered on the fastest 
possible connection, a local loopback. Brief confirmation tests 
were run on internet-crossing traffic and a LAN. It should be 
noted that many of the results, however, are independent of 
transmission speed – in particular, DEVCC is theoretically and 
practically trivial to detect at any speed, as it’s frequency 
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distribution does not change. 
All data were gathered across identical network conditions 

on a low-traffic, high-bandwidth, low-latency network in 
conditions which make detection easier.  Results for many 
tests would be less discriminating in a network with more 
friendly characteristics.  For each dataset, data gathering was 
enabled and a 50Mb file was downloaded 30 times 
consecutively or until the entire message (32 bytes, including 
checksum) was sent. This was repeated 10 times per 
algorithm, as well as for an unmodified TCP stack.  All bar 
graphs use means for their heights and standard deviations for 
their error bars. 

In each legend, Norm is normal traffic, VOrg is DEVCC, 
V1 is Half-DEVCC, V4 is Timestamp-Masked, V5 is 
Timestamp-Independent, and V8 is Bernoulli. 

 

 
Figure 6: Frequency analysis on the least significant bit 

 

 
Figure 7: Auto-correlation analysis on the least significant bit 

 

 
Figure 8: Unique timestamp count binning 

 

 
Figure 9: Frequency analysis on the least 2 significant bits 

 

 
Figure 10: Auto-correlation analysis on the least 2 significant 
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bits 
 

 
Figure 11: Unique timestamp usage to total timestamp count 

ratio 
 

 
Figure 12: Average number of packets till complete message 

transmission 

VIII. FUTURE CONSIDERATIONS 

A. The RTT Problem 
Unfortunately, all of the algorithms presented in this paper 

suffer from the same problem; an unusual RTT pattern. This 
pattern is trimodal for DEVCC and for Half-DEVCC, bimodal 
for Timestamp-Masked and Timestamp-Independent, and 
giving a curve instead of a spike for Bernoulli, and in each 
case it is simple to detect on a relatively stable network given 
even a moderately small number of packets. While some 
conditions such as the watermarking scheme described in [5] 
may obfuscate this, it still exists as a general problem, and 
how to best solve it without impacting network performance 
or the number of packets per message transmission is an area 
for future research. 

B. Send Delaying 
We were constrained by the monotonicity of time and the 

10ms granularity of the system clock for each of the 
algorithms described. Delaying the transmission of each 
outgoing packet by the duration of one timestamp tick would 
allow us to send subsequent packets one earlier as well as one 
later, effectively allowing us to go back in time. This would 
allow the unique timestamps to duration ratio to move closer 
to 1:1, and would allow autocorrelation numbers to more 
closely approach those of real traffic (depending on the 
algorithm, this may apply solely to two-or-more bit 
autocorrelation or to all). Unfortunately this would decrease 
latency on all connections by 10ms, as slowing it on only the 
connection carrying the covert channel would be trivial to 
detect. 

C. Bit Density 
We can reduce the rate of usage of a given packet in a 

variety of ways. This allows us to arbitrarily closely approach 
real traffic patterns, at the cost of decreased bit/packet density. 

D. Duplicate Bits 
Since each of the algorithms presented in this paper is based 

on a probabilistic data transfer model, we do not ever know if 
the entire message has been received, or even which bits have 
currently been received. Because of this, duplicate bits are 
frequently sent. This cannot be solved without using a 
two-way channel, however thankfully TCP allows this, and in 
fact supports it already; both the ACK number and the 
optional timestamp reply field allow us to determine whether 
some bits have been received, without any modification of the 
receiving system – though this will only work if the intended 
recipient is the receiver, and not if they are a point in between. 

E. Applications 
It is entirely feasible to transmit data at slightly-slower than 

typing speed on a fast network using a covert channel like this, 
especially if the minimum timestamp delta is smaller than 
10ms. In particular, a 100Mbps Ethernet connection can easily 
transmit far more than 100 packets a second, which gives over 
99.998% probability of correctly sending a byte during a one 
second interval. This is not fast enough to transmit streaming 
audio, but is certainly fast enough for concise instant 
messaging. 

IX. CONCLUSION 
An effective covert channel must not be detectable in any 

way, therefore a single failed test is sufficient to discard an 
algorithm. In high speed conditions, only the 
Timestamp-Independent algorithm is satisfactory. In low 
speed situations, however, each of the Timestamp-Masked, 
Timestamp-Independent, and Bernoulli algorithms will 
approximate normal traffic closely enough as to be statistically 
indistinguishable. The RTT problem, however, makes any of 
these detectable in a stable low-load network, so these should 
not be considered currently useable except in appropriate 
conditions. Decreased bit density and avoiding resending data 
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are both promising areas for improvement.  
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