

1

Abstract—In this paper we analyze DEVCC, the most

commonly referenced implementation of covert channels using
steganography in TCP timestamps. We identify detectable
patterns in the timestamps such as an abnormal frequency in the
least significant bit (LSB) of 5:3 ones to zeroes, and
autocorrelation that does not parallel normal TCP traffic, in
particular one-bit autocorrelation of 0-0 and 1-1 pairs being
unequal, and propose multiple alternative transmission
algorithms in the hopes that they not only improve upon DEVCC
but that they are also useable in real-world scenarios. Finally we
analyze DEVCC and each alternative to support the strength of
the best of these alternatives, showing that they show far less
abnormal patterning than DEVCC, and we find that three
proposed algorithms are statistically indistinguishable from
normal TCP/IP traffic in low-bandwidth situations.

Index Terms—Computer security, covert channel,
steganography, TCP timestamp.

I. INTRODUCTION

HE need for hiding the existence of data transmission is
often overlooked as maintaining the secrecy of visible

transmissions is focused upon. However, simply hiding the
contents of a message can be insufficient; in some cases,
simply knowing that information was sent is revealing too
much data. Scenarios such as a political blogger who wishes to
remain anonymous or a governmental spy who does not want
to be exposed are immediately obvious; for the former,
detecting encrypted file uploads at times that posts were made
would be a strong signal, and for the latter even sending
encrypted data at all might draw too much attention.

The solution is to hide the very transmission of data using a
covert channel. A covert channel is deemed useful if it is
practically undetectable when used. We will not consider a
channel to have failed if an active warden model can prevent
transmission, as prevention is not equivalent to detection, and
is in fact much easier [1].

We focus upon the potential channel of timestamps in TCP
headers. TCP over IP is the most frequently used protocol on
the internet, and its optional timestamp field is being used by
increasing numbers of operating systems. Its purported
purpose is to allow hosts to accurately calculate round trip
times (RTT) and to prevent sequence number (SEQ)
wraparound difficulties [2]. We chose this channel because of
its ubiquity and because there seems to be less published

material on it compared to media such as images and sound.
 It should be noted that to embed covert data we must delay
packets. We cannot simply reduce their timestamps, since it is
often trivial to detect packets being sent 10ms (the granularity
on of a Linux system clock) after their timestamp.

Other techniques to use sections of TCP packets as covert
channels have been presented. Type-of-Service channels flip
bits in rarely-used fields of the header, but are trivial to detect
precisely because these fields are rarely used, and even more
rarely changed mid-stream [2]. The initial sequence number
field, or ISN, can be used as well, but it can send at most four
bytes per connection (not per packet), and undetectable
versions must send significantly fewer than this [2]. Other
methods exist, but are also detectable, as described in [3].
Mechanisms for embedding a channel at a lower level [2] have
been proposed, but as these are unusable in an even mildly
complicated network, their usefulness is diminished.

The only implementation of covert channels over TCP
timestamps that we were able to find is DEVCC. “It is a
protocol for sending data… at a rate of one bit per packet” [4].
It chooses which plaintext bit to send using a hash of the SEQ
(which for our consideration can be effectively considered a
unique number assigned to each packet). It determines a
cypherkey using a hash of the timestamp (without its LSB)
and SEQ. The cyphertext bit is the xor of the cypherkey and
the plaintext key, and so if necessary it delays the packet to get
the appropriate LSB as cyphertext. If a higher order bit is
changed by this delay it begins calculations again.
Unfortunately this recalculation leads to easily detectable
patterning in all traffic conditions. In addition, timing
characteristics caused by delaying half of all packets by 10ms
forms a strong fingerprint – so strong that watermarking
schemes have been proposed which do almost exactly this [5].
The data is recovered from the resulting packet in a symmetric
fashion by the receiver.

We have implemented four alternative algorithms for
manipulating TCP timestamps. The first algorithm is
effectively half DEVCC, half normal traffic, as it simply
generates a pseudorandom bit from the packet header and
decides, based on that, whether or not a data bit should be
sent.

The second algorithm is also a variant of DEVCC. It
decreases the chance that a recalculation is needed by using
fewer bits of the timestamp during the cyphertext calculation.

The third algorithm reduces the randomness of the
cypherkey by ignoring the timestamp during its generation.
 The final algorithm simply computes a hash of the entire

Improvements to Covert Channels in TCP
Timestamps

D. Anderson and P. Lee

T

2

packet header, including all the bits of the timestamp, and if
the LSB of the hash is the cyphertext LSB it is sent.

As will be seen below, each of the bit-encode algorithms
will also decode correctly because they are symmetric. For
brevity the decode steps will not be explicitly listed.

II. POTENTIAL AREAS FOR IMPROVEMENT IN DEVCC

A. Algorithm
DEVCC’s sending algorithm is as follows:

DEVCCENCODEPACKET(Packet P, TimeStamp T)
 GetHeader(P) → PacketHeader
 GetSeqNum(PacketHeader) → SequenceNumber
 SHA1(SequenceNumber) → Index
 SHA1(PacketHeader, T & 0xfffffffe) → KeyBit
 MessageBlock[Index] → PlainTestBit
 PlainTextBit ⊕ KeyBit → CipherTextBit
 If T[0] ≠ CipherTextBit then

T + 1 → T
If T[0] = 0 then
 Return DEVCCEncodePacket(P,T)
End if

 End if
 SendPacket(P,T)

Figure 1: DEVCC embedding algorithm

As discussed in the introduction, this uses a hash of the SEQ
to choose the plaintext bit, it uses a hash of the SEQ and the
timestamp to get a cyphertext bit, and if the current timestamp
does not have a matching LSB it delays one tick and
recalculates. A full discussion of the algorithm can be found in
[2].

B. Areas Open To Improvement
The DEVCC algorithm contains a serious flaw in any traffic

conditions: it will transmit far fewer 0s than 1s in LSBs. When
the LSB is 0, it has .5 odds of remaining a 0 or of becoming a
1. In no case does it become a 0 again, as it busy-waits in the
kernel where it cannot be preempted. When the LSB is a 1, it
also has .5 odds of remaining a 1 and .5 odds of being
increased. When it is increased, however, the second-to-least
significant bit is modified, and the cypherbit is recalculated
based on new parameters, with even odds of being a 0 or 1.
Therefore an original LSB of 1 has .75 odds of having a
cypherbit of 1 and only .25 odds of having a cypherbit of 0.

A simple frequency analysis shows this plainly, with a 0s:1s
sent-LSB ratio of .75:1.25, or 3:5. In traffic that is even mildly
bursty (two-packet bursts are enough) this will be evident. A
one-bit autocorrelation test will also reveal the discrepancy
immediately if a sample of high speed traffic is taken, as
normal traffic has equal odds for the case of an LSB of 1
following a 1 and for a 0 following a 0.

A statistical anomaly in high-speed high-density situations is
the average number of unique timestamps used versus the
transmission duration. Normal TCP traffic in these conditions
is theorized to approach a ratio of 1:1, as each timestamp

should be used [2]. DEVCC, however, approaches a number
under .75 due to its need for time delays [2].

The number of groups of identical timestamps, by size of
group, in high speed situations, is approximately exponentially
decreasing (exponent of ½), whereas normal traffic
approximately fits a bell curve under the same traffic
conditions, so this can be used to differentiate the two.

Finally, under moderately consistent network conditions in
small time intervals (<< 60,000ms), round-trip-time is
normally unimodal with a significant spike at the average
round trip time (RTT). This spike characteristically has a
width of less than 10ms [6][7]. Because DEVCC delays, on
average, 3/8 of the packets by 10ms and 1/8 by 20ms, its RTT
pattern is trimodal, with the second spike roughly half as high
and the third spike significantly smaller than the first, with a
10ms gap between each. Because RTT is a Poisson process
this patterning can be detected independently from
transmission speed or packet burst patterns.

III. ALTERNATIVE ALGORITHM: HALF-DEVCC

A. Motivation
DEVCC has very detectible patterns; by mixing an even

amount of regular traffic with the covert channel we hoped to
make patterning more difficult to observe.

B. Algorithm
HALFDEVCCENCODEPACKET(Packet P, TimeStamp T)
 GetHeader(P) → PacketHeader
 GetSeqNum(PacketHeader) → SequenceNumber
 SHA1(SequenceNumber, Constant) → RandomBit
 If RandomBit = 1 then
 Return DEVCCEncodePacket(P, T)
 End if
 SendPacket(P,T)

Figure 2: Half-DEVCC embedding algorithm

C. Results
Because this relies on the DEVCC algorithm, it still has

very noticeable patterns; the LSB ratio has improved but
frequency analysis on even a short transmission still shows
something is amiss. For the same reason, autocorrelation
reveals an unwanted pattern like DEVCC’s. There is only a
mild improvement upon its unique timestamp ratio—not
enough to be undetectable. Unique timestamp count binning is
substantially closer to normal traffic than DEVCC, but does
not conform to a normal curve, and so may still be detectable.
It also obviously requires twice as many packets as DEVCC to
send a given message, which is a significant drawback.

IV. ALTERNATIVE ALGORITHM: TIMESTAMP-MASKED
KEYBIT GENERATION

A. Motivation
The frequency problem in DEVCC is a direct result of its

frequent recomputations of the keybit due to non-LSB bits in

3

the timestamp being changed when the LSB is incremented
from 1. By reducing the dependency on the lower-order bits of
the timestamp by masking some out, this rollover problem can
be reduced. We tested using 4 bits to ignore hoping to
decrease the problem to 1/16th while ensuring that there was
still a nontrivial dependency on the timestamp.

B. Algorithm
TSMASKEDENCODEPACKET(Packet P, Timestamp T)
 GetHeader(P) → PacketHeader
 GetSeqNum(PacketHeader) → SequenceNumber
 SHA1(SequenceNumber) → Index
 SHA1(PacketHeader, T & MaskBits) → KeyBit
 MessageBlock[Index] → PlainTestBit
 PlainTextBit ⊕ KeyBit → CipherTextBit
 If T[0] ≠ CipherTextBit then

 T + 1 → T
 If T[0] = 0 then
 Return TSMaskedEncodePacket(P,T)
 End if

 End if
 SendPacket(P,T)

Figure 3: Timestamp-Masked embedding algorithm

C. Results
As expected, this alternative solved the bit frequency

problem, being statistically indistinguishable from normal
traffic. With respect to unique timestamps, the ratio was over
0.9—higher than our actual measurement of unmodified
traffic—and obviously improved greatly over DEVCC.
Unfortunately it does not have timestamp count patterns like
normal traffic, and autocorrelation on one and two bits reveals
a distinctly nonstandard pattern.

V. ALTERNATIVE ALGORITHM: CYPHERBIT INDEPENDENT OF
TIMESTAMP

A. Motivation
Using the timestamp to determine the cypherbit seems to

introduce many problems; by using the timestamp solely as a
transmission medium we aim to avoid this.

B. Algorithm
TIMELESSENCODEPACKET(Packet P, Timestamp T)
 GetHeader(P) → PacketHeader
 GetSeqNum(PacketHeader) → SequenceNumber
 SHA1(SequenceNumber) → Index
 SHA1(PacketHeader) → KeyBit
 MessageBlock[Index] → PlainTestBit
 PlainTextBit ⊕ KeyBit → CipherTextBit
 If (T[0] ⊕ CipherTextBit) = 1 then

 T + 1 → T
 End if
 SendPacket(P,T)

Figure 4: Time independent encryption embedding algorithm

C. Results
This algorithm has a bit frequency pattern indistinguishable

from normal traffic. Its repeated timestamp binning pattern is
similar to normal traffic’s, though with a smaller standard
deviation. For both one and two bits it’s autocorrelation
patterns are within 1.5 standard deviations of normal traffic,
often better.

VI. ALTERNATIVE ALGORITHM: BERNOULLI EXPERIMENT

A. Motivation
We wish to treat the embedding of data as a coin-toss so as

to make it a Bernoulli experiment, in part because it is
well-suited for theoretical analysis.

B. Algorithm
BERNOULLIENCODEPACKET(Packet, Timestamp T)
 GetHeader(P) → PacketHeader
 GetSeqNum(PacketHeader) → SequenceNumber
 SHA1(SequenceNumber) → RandomBit
 SHA1(PacketHeader, T)→ KeyBit
 MessageBlock[Index] → PlainTestBit
 PlainTextBit ⊕ KeyBit → CipherTextBit
 If RandomBit ≠ CipherTextBit then

 T + 1 → T
 Return BernoulliEncodePacket(P,T)
 End if
 SendPacket(P,T)

Figure 5: Bernoulli embedding algorithm

C. Results
Frequency analysis and one-bit autocorrelation tests cannot

distinguish this from normal traffic. Unfortunately, this
algorithm still exhibits an exponential decrease in repeated
timestamp count bins by size. Furthermore, two-bit
autocorrelation shows small but statistically significant spikes
where normal traffic has none. Since it is a Bernoulli
experiment with .5 probability of usage, its unique timestamp
to total possible timestamp ratio is 0.5, far below the
theoretical “good” ratio of 1.

VII. METHODOLOGY AND DATA
We inserted one kernel module at a time into a Linux

system to test each algorithm. The module intercepted
outgoing TCP packets immediately before they are sent to
hardware and, if applicable, modifies them before sending
them to the hardware. We ensured that CPU usage and
conditions in the surrounding network did not affect data
collection.

To provide a suitably hostile environment for testing the
algorithms, all experimental data was gathered on the fastest
possible connection, a local loopback. Brief confirmation tests
were run on internet-crossing traffic and a LAN. It should be
noted that many of the results, however, are independent of
transmission speed – in particular, DEVCC is theoretically and
practically trivial to detect at any speed, as it’s frequency

4

distribution does not change.
All data were gathered across identical network conditions

on a low-traffic, high-bandwidth, low-latency network in
conditions which make detection easier. Results for many
tests would be less discriminating in a network with more
friendly characteristics. For each dataset, data gathering was
enabled and a 50Mb file was downloaded 30 times
consecutively or until the entire message (32 bytes, including
checksum) was sent. This was repeated 10 times per
algorithm, as well as for an unmodified TCP stack. All bar
graphs use means for their heights and standard deviations for
their error bars.

In each legend, Norm is normal traffic, VOrg is DEVCC,
V1 is Half-DEVCC, V4 is Timestamp-Masked, V5 is
Timestamp-Independent, and V8 is Bernoulli.

Figure 6: Frequency analysis on the least significant bit

Figure 7: Auto-correlation analysis on the least significant bit

Figure 8: Unique timestamp count binning

Figure 9: Frequency analysis on the least 2 significant bits

Figure 10: Auto-correlation analysis on the least 2 significant

5

bits

Figure 11: Unique timestamp usage to total timestamp count

ratio

Figure 12: Average number of packets till complete message

transmission

VIII. FUTURE CONSIDERATIONS

A. The RTT Problem
Unfortunately, all of the algorithms presented in this paper

suffer from the same problem; an unusual RTT pattern. This
pattern is trimodal for DEVCC and for Half-DEVCC, bimodal
for Timestamp-Masked and Timestamp-Independent, and
giving a curve instead of a spike for Bernoulli, and in each
case it is simple to detect on a relatively stable network given
even a moderately small number of packets. While some
conditions such as the watermarking scheme described in [5]
may obfuscate this, it still exists as a general problem, and
how to best solve it without impacting network performance
or the number of packets per message transmission is an area
for future research.

B. Send Delaying
We were constrained by the monotonicity of time and the

10ms granularity of the system clock for each of the
algorithms described. Delaying the transmission of each
outgoing packet by the duration of one timestamp tick would
allow us to send subsequent packets one earlier as well as one
later, effectively allowing us to go back in time. This would
allow the unique timestamps to duration ratio to move closer
to 1:1, and would allow autocorrelation numbers to more
closely approach those of real traffic (depending on the
algorithm, this may apply solely to two-or-more bit
autocorrelation or to all). Unfortunately this would decrease
latency on all connections by 10ms, as slowing it on only the
connection carrying the covert channel would be trivial to
detect.

C. Bit Density
We can reduce the rate of usage of a given packet in a

variety of ways. This allows us to arbitrarily closely approach
real traffic patterns, at the cost of decreased bit/packet density.

D. Duplicate Bits
Since each of the algorithms presented in this paper is based

on a probabilistic data transfer model, we do not ever know if
the entire message has been received, or even which bits have
currently been received. Because of this, duplicate bits are
frequently sent. This cannot be solved without using a
two-way channel, however thankfully TCP allows this, and in
fact supports it already; both the ACK number and the
optional timestamp reply field allow us to determine whether
some bits have been received, without any modification of the
receiving system – though this will only work if the intended
recipient is the receiver, and not if they are a point in between.

E. Applications
It is entirely feasible to transmit data at slightly-slower than

typing speed on a fast network using a covert channel like this,
especially if the minimum timestamp delta is smaller than
10ms. In particular, a 100Mbps Ethernet connection can easily
transmit far more than 100 packets a second, which gives over
99.998% probability of correctly sending a byte during a one
second interval. This is not fast enough to transmit streaming
audio, but is certainly fast enough for concise instant
messaging.

IX. CONCLUSION
An effective covert channel must not be detectable in any

way, therefore a single failed test is sufficient to discard an
algorithm. In high speed conditions, only the
Timestamp-Independent algorithm is satisfactory. In low
speed situations, however, each of the Timestamp-Masked,
Timestamp-Independent, and Bernoulli algorithms will
approximate normal traffic closely enough as to be statistically
indistinguishable. The RTT problem, however, makes any of
these detectable in a stable low-load network, so these should
not be considered currently useable except in appropriate
conditions. Decreased bit density and avoiding resending data

6

are both promising areas for improvement.

REFERENCES
[1] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil, “Eliminating

Steganogrphy in Internet Traffic with Active Wardens,” presented at the
5th International Workshop on Information Hiding, Oct. 2002

[2] S. J. Murdoch, and S. Lewis, “Embedding Covert Channels into
TCP/IP,” presented at the 7th International Workshop on Information
Hiding, June 2005

[3] K. Szczypiorski, “HICCUPS: Hidden Communication System for
Corrupted Networks,” presented at the International Multi-Conference
on Advanced Computer Systems, 2003

[4] J. Giffin, R. Greenstadt, P. Litwack, and T. Tibbetts, “Covert Messaging
in TCP,” Privacy Enhancing Technologies, vol. 2482, pp. 194-208, 2002

[5] X.Y. Wang, S. Chen, and S. Jajodia, “Tracking Anonymous
Peer-to-Peer VoIP Calls on the Internet,” in Proc. 12th ACM Conference
on Computer Communications Security (CCS 2005), November 2005

[6] D. Sanghi, A. K. Agrawala, O. Gudmundsson, and B. N. Jain,
“Experimental Assessment of End-to-End Behavior on Internet,”
Computer Science Technical Report Series, vol. CS-TR-2909, 1992

[7] H. Ohaski, M. Murata, and H. Miyahara, “Modeling End-to-End Packet
Delay Dynamics of the Internet Using System Identification,” in Proc.
17th International Teletraffic Congress, pp. 1027-1038, Dec. 2001

