
Study of Secondary
and Approximate Authorizations Model

(SAAM)
Kyle Zeeuwen

kylez@ece.ubc.ca

Abstract— Request response access control systems
with off-site Policy Decision Points have their reliabil-
ity and latency bounded by the network connecting
the components. We demonstrate that recycling pre-
computed authorizations based on knowledge of the
BLP protocol reduces the latency and increases the
reliability of the system to a greater extent than
existing approaches that use precise authorization
recycling.

A simulation is described that measures latency
and system reliability for systems that use no recy-
cling, precise recycling, and approximate recycling.

Systems with a round-trip time around 20ms to
their Policy Decision Points can experience an order
of magnitude reduction in their average client latency
by using SAAM Recycling.

I. INTRODUCTION

Request-response access control systems sepa-
rate application logic from access decisions. Ac-
cess is granted or denied based on the security
policy of the system. The policy decision point
(PDP) is also separated from the policy enforce-
ment point (PEP) in many systems. This design
is illustrated in Figure 1. Examples of this type of
system include Access Manager [1], GetAccess [2],
SiteMinder [3], and ClearTrust [4]. This design
allows multiple PEP’s to use a single PDP and
reduces the administrative overhead placed on IT
personnel. This design imposes an upper limit on
the reliability of the system: if the PDP or the
network becomes partitioned fails the system will
also invariably fail. The separation of PDP from
PEP also increases the latency observed by the
users of the system. [5]

One improvement to this design is to reuse previ-
ously computed (secondary) authorizations. Exist-
ing approaches recycle an authorization if it exactly
matches the pending authorization request [6]. This
is referred to as precise authorization recycling.
Another method, referred to as Secondary and
Approximate Authorizations Model (SAAM), com-
bines knowledge of the security model with non-
precise, or approximate, secondary authorizations

to determine the result of pending authorization
requests [7].

It is believed that a recycling component that
leverages approximate authorizations will reduce
the average latency of processing authorization
requests when compared to a similar system using
precise recycling. The SAAM recycling component
will also increase the reliability of the system by
providing an alternative source of authorizations;
the PDP will have to fail and the recycling com-
ponent will have to miss for the system to fail.

This document presents results from ongoing
research that uses a SAAM recycling component
in a request-response access control system based
on the Bell LaPadula (BLP) Mandatory Access
Control policy [8], [9].

Fig. 1. Request-response paradigm in authorization systems

Results indicate that a SAAM recycling com-
ponent produces a cache hit rate that is greater
than a precise recycling component under the same
circumstances. This increased hit rate translates
into greater improvements in terms of latency and
reliability. The extent of these improvements is
presently under investigation.

The rest of the paper is organized as follows.
Section II will introduce the components of the

Application Server

Client
Policy

Enforcement
Point

Application

Authorization
Recycling Component

Policy
Decision

Point

A
 p
 p lic a

 tio
 n R

 e
 s p

 o n s e

Application Request

R
 e c y c lin

 g
 R

 e q
 u e s t

A
p
p
lic

a
tio

n
 R

e
q
u
e
s
t

Authorization Request

R
e
c
y
c
lin

g
 R

e
s
p
o
n
s
e

Authorization ResponseApplication Response

t1

t8

t7t6

t5 t4

t3

t2T
PEP

TA

T
PDP

T
RC

R
PEP

R
PDP

RT

R
RC

Fig. 2. Request-Response Access Control System with Recycling Component

simulation and provide formulas used to calculate
latency and reliability. Section III presents and
discusses the results that were gathered, and finally
Section IV concludes.

II. METHODOLOGY

The methodology section presents an analytical
model of the system and discusses which parts are
important for our study and which can be safely
ignored. Once this is complete the design and
implementation of the simulation are presented.

A. Analytical Model of System

The analytical model involves interactions be-
tween 5 components, as shown in Figure 2. The
client component represents one or more machines
running client side software that issue requests to
the system. The Policy Enforcement Point (PEP)
intercepts these requests and generates authoriza-
tion requests. These authorization requests are si-
multaneously sent to the Policy Decision Point
(PDP) and the Recycling Component (RC). The
PEP will use the first authorization response it
receives to either allow or deny access to the
requested resource. The resource resides in the
application component. The PEP is also responsible

for updating the RC with each request-response
pair generated by the PDP.

The PDP contains all the BLP specific secu-
rity information for the subjects and objects of
the system. When it receives a request, the PDP
determines if access should be allowed or denied.
It communicates this decision back to the PEP via
an authorization response.

The RC receives authorization requests from the
PEP and searches for suitable matches. If an exist-
ing valid authorization request is found then the RC
returns the corresponding authorization response to
the PEP. Otherwise, the RC indicates that it cannot
find a match. If the RC is using precise recycling
only then it will simply search it’s cache for a
request that matches the pending request exactly. If
the RC is using precise and approximate recycling
it issues simultaneous requests to both components
and uses the first response it receives. The details
of the BLP approximate recycling algorithm are
presented in [10].

1) Simplifying Assumptions: Several compo-
nents of the analytical model can be safely ignored
for the purposes of our simulation. Simplifying the
simulation serves several purposes. First, the imple-
mentation becomes easier. Second, the correctness

of the design is easier to verify. Lastly, the cor-
relation between results and input becomes more
pronounced as the number of inputs decreases.

The behavior of the Application is not important
because the simulation is only concerned with mea-
suring the effects of SAAM recycling. The only
significant attributes of the application which must
be considered are its contribution to the latency and
reliability observed by the client.

It is not necessary to treat the Client as a unique
entity. A list of requests can be substituted in place
of the client. It is still necessary to account for the
network latency between the client and the PEP.

Of all the timing parameters shown in Figure 2,
only l2, l3, TPDD, l4, l5, and TRC affect the
behavior of the simulation. The remaining values
can be combined into a constant that affects the
observed latency at the client.

The reliability of the application and the PEP can
be combined into a constant that only affects the
observed reliability of the client. Although it true
that the reliability of the PEP affects the behavior
of the PDP and RC, the purpose of this study is not
to determine these effects. Including PEP failures
into our simulation would unnecessarily complicate
the analysis and interpretation of results.

2) Reliability Calculations: The reliability of
the system can be calculated from the reliability
of the components of the system. First we must
construct a Reliability Block Diagram (RBD) [11]
for the system. This allows us to visualize the
failure paths of the system. The RBD is shown in
Figure 3. The PEP represents a unique component
because each request is handled by the PEP several
times during processing. As a result it occurs
several times in our RBD.

In typical software systems reliability is the
probability that a system will function as intended
at a given time. In our simulation we will treat
the RC reliability in a unique manner. If the RC
component returns a response when queried then
it functioned ’as intended’. When the component
fails to return a response we will consider this a
failure, even though this is not a failure from a
software engineering perspective. For the rest of
this paper we will use the terms reliability and hit-
rate interchangeably when referring to the RC.

The treatment of the RC’s hit-rate as its re-
liability introduces another problem: the hit-rate
does not vary directly with time like most standard
software reliability measurements. Instead, the hit-
rate is a function of the cache warmness. To
accommodate this requirement the reliability of the
system will be computed as a function of cache-

warmness and time.

PEP

RC

PDP

PEP Appl. PEP

RAppl.

R
RC

RPEP

RPDP

RPEP
RPEP

Fig. 3. Reliability Block Diagram for Simulation

Using standard reliability modeling
techniques [11] we arrive at the following
equation for system reliability.

RSY S(t, x) = R0(t) ∗ (RPDP (t) + RRC(x)
−RPDP (t)RRC(x)) (1)

R0(t) = R3
PEP (t) ∗RAppl(t)

We are concerned with determining the reli-
ability improvement offered by using a SAAM
component. This can be accomplished without
modeling the reliability of the system over time.
We can assume a fixed reliability for each time-
dependant component and determine the effect of
cache warmness on the reliability of the system.
This allows us to further reduce Equation 1 to the
following form:

RSY S(x) = R0 ∗ (RPDP + RRC(x)−
RPDP RRC(x)) (2)

3) Latency Calculations: Latency will be mea-
sured from the time the client issues a request to
the time it receives the response. This will be com-
puted as a sum of the communication delays and
the processing times for each of the components
involved in processing the request.

The PEP uses the first authorization response it
receives; therefore, there must be some logic used
to determine which communication delays to use
for each latency calculation. The communication
costs for the PDP response time and for the RC
response time are calculated and the lesser is used.
Equation 3 shows the latency calculations. The
terms are taken from Figure 2. The terms grouped
to form L0 will be treated as a single constant

and not simulated. They can be varied during the
analysis phase to determine their effect.

L = L0 + min((t2 + TPDP + t3),
(t4 + TRC + t5)) (3)

L0 = t1 + t8 + t6 + t7 + TPEP + TA

Equation 3 can be used to derive an equation
for average latency based on the hit-rate of the
recycling component. This is shown in Equation 4.
This is done based on the observation that the
latency is comprised of the PDP round trip time
(t2 +TPDP + t3) when the RC does not produce
a response. In the case where the RC does produce
a response, the minimum function from Equation 3
is invoked.

L = L0 + RRC(x) ∗
min((t2 + TPDP + t3), (t4 + TRC + t5))

+(1−RRC(x)) ∗ (t2 + TPDP + t3) (4)

B. Simulation Design

The equations presented in II-A provide a way
to calculate the reliability and latency observed
at the client. The equations require the following
values from the simulation: TPDP , TRC(x), and
RRC(x). A framework to produce these values is
presented in this section. This framework is shown
in Figure 4. Each component will be discussed.

Simulation Engine

Approximate
Recycling

Component

Precise Recycling
Component

PDP

Request Set
Security

Information
Power Set

Fig. 4. Simulation Framework

1) Input Generation: The request set and power
set are simply lists of requests. Each request is
made up of a subject, object, and access type. The
power set is a randomized list of every possible
request given a set of subjects, objects, and access
rights. The request set is also a randomized list
of requests. The total size of the request set is an
integer multiple of the size of the power set.

The security information contains the BLP spe-
cific security information for the subjects and
objects in the system. It is generated randomly
given the number of subjects, objects, classifica-
tions/clearances, and categories in the system.

2) PDP: The PDP implements the BLP protocol
as specified in [8], [9].

3) Precise Recycling Component: The Precise
Recycling Component (PRC) is implemented as a
hash table. The requests serve as keys that map
to one corresponding response. When the engine
queries the PRC with a request the PRC performs
a lookup using the request as a key. If a corre-
sponding response is found then it is returned to
the engine.

4) Approximate Recycling Component: The Ap-
proximate Recycling Component (ARC) leverages
knowledge of the BLP protocol to infer the result
of requests based on the results of previous request-
response pairs. The details of this component can
be found in [10].

5) Simulation Engine: The simulation engine is
responsible for running the simulation and gather-
ing the results. The engine reads requests from the
power set and submits each to the PDP, the Precise
Recycling Component (PRC), and the Approximate
Recycling Component (ARC). The engine uses the
responses from the PDP to update the PRC and
ARC, which warms the cache to a specified level.
Once a desired cache warmness is achieved the
engine stops using requests from the power set and
switches to the request set. It then iterates through
each request in the request set and determines val-
ues for TRC , TPDP , andRRC . During this phase
the recycling components are not updated. This
process repeats several times until the cache has
been completely warmed. The result of this are
sequences of TRC , TPDP , andRRC values which
vary based on cache warmness.

III. RESULTS AND DISCUSSION

Results are still being actively gathered and
interpreted at the time of paper submission. This
section presents some preliminary figures and de-
tails the ongoing work. The discussion of results
is also presented in this section. Simulation results
were gathered on a commodity PC using an Intel
Pentium 4 2.8 GHz hyper-threaded processor with
1 GB of RAM. The OS on this machine was
Windows XP Professional SP2. The simulation was
written in Java and run on the Sun’s 1.4.2 09 JRE.
High resolution timing was accomplished using the
Sun.Misc.Perf Java class.

Fig. 5. Graph (a) compares the hit rate produced using SAAM Recycling and Precise Recycling. (b) and (c) plot the improvement
of SAAM Recycling over the Precise Recycling. (b) Shows how the hit rate improvement diminishes as the the BLP lattice grows.
(c) shows the difference in observed system reliability for different values of PDP reliability.

Three distinct architectures were simulated. The
first uses no authorization recycling. The second
uses only precise recycling, and the third uses both
precise and SAAM recycling.

Unless otherwise indicated, the results presented
were gathered using a data set comprised of 10
subjects and 20 objects. Subjects and objects were
assigned levels in a small BLP security lattice
consisting of 2 security clearances and 2 security
categories. The power set consisted of 400 requests
and the request set 1200 requests.

A. Reliability Measurements

Figure 5(a) shows the hit rate as a function of
cache warmness for the data set described above.
This data set is too small to show the be effects
of SAAM Recycling in a real scenario; however,
it does give evidence that the SAAM recycling
component produces a higher hit rate than a precise
component for an identical series of requests.

The same data is used as input to Equation 2
to produce Figure 5(c). In this plot the R0 value
is fixed at 1.0 to isolate the effects of varying
the PDP reliability. The data series are produced
by calculating the difference in hit rate percentage
between precise and SAAM recycling. The graph
shows that SAAM recycling can improve a systems
reliability even in cases where the RPDP is already
high. Although the magnitude of improvement is
low in the case where RPDP is set to 0.99 it
can be argued that highly reliable systems exist in
environments where even small improvements in
reliability are desirable.

We wish to understand the effect of the size
of the BLP lattice on the hit rate of the SAAM
component. We hypothesize that increasing the
number of subjects and objects that share a par-

ticular security level in the lattice will increase the
hit rate observed. We refer to this relationship as
density.

There are two ways to test this hypothesis.
The first involves fixing the subject and object
population and varying the size of the BLP lattice.
This is shown in Figure 5(b). It can be seen that the
largest improvement in hit rate is experienced when
the size of the lattice is small relative to the subject
and object population. Another way to say this is
that the hit rate improves as the density increases.

The second way to test this hypothesis is to
fix the size of the lattice and vary the subject
and object population. This is an area of ongoing
research. Initial results indicate that higher hit rates
are experienced; however, more investigation is
required.

We also wish to understand the effect of the
shape of the BLP lattice on the hit rate of the
SAAM component. We propose to fix the density
of subjects and objects and vary the shape of the
lattice. The details of the experiments required to
determine this relationship are still being refined.

B. Latency Measurements

Two latency graphs are presented. The first plot,
Figure 6(a), shows the computation time for each
of the components of the system. This is meant
to demonstrate the relative complexities of the
internal algorithms; however, the small size of the
subject and object population limit the relevance of
this graph. Studies of the computation time using
larger subject and object populations are ongoing.

Figure 6(b) was generated using the latency cal-
culations shown in Equation 4 for the same data set
as previous plots. In this graph the round trip time
between the PEP and PDP is varied to show the

Fig. 6. (a) shows the the computation time for the recycling modes varies with cache warmness. (b) shows the average observed
latency at the client site for three different network environments. The PDP is simulated to be farther away from the PEP by
increasing the RTT between PEP and PDP.

effectiveness of recycling under various network
deployments. Using a RTT of 20ms between PDP
and PEP both recycling techniques achieve an order
of magnitude improvement in observed latency at
the client.

IV. CONCLUSION

Although this study is a work in progress,
several points have already become clear. Applying
SAAM recycling to a system using the BLP access
control model can yield an improvement in reliabil-
ity and latency under certain circumstances when
compared to precise recycling. Both the latency
and reliability improvements offered by SAAM
recycling are dependant on the hit rate of the
SAAM component. Effort should be focused on
maximizing this value. Further, the system is only
applicable in environments where a reasonable hit
rate can be achieved.

The mapping of subjects and objects to security
levels must be dense. If this is not the case the hit
rate of the SAAM component degrades to match
the hit rate of a precise recycling component.

The cache warmness must be kept high. If cache
entries are constantly being invalidated then the hit
rate will suffer accordingly.

Further work is necessary to understand the
impact of lattice shape and population size on the
hit rate. It is expected that in an environment with
hundreds of thousands of subjects and objects the
hit rate improvement offered by a SAAM recycling
component will be more pronounced than current
results have indicated.

REFERENCES

[1] G. Karjoth, “Access control with IBM Tivoli Access
Manager,” ACM Transactions on Information and Systems
Security, vol. 6, no. 2, 2003, pp. 232–257.

[2] Entrust Inc., GetAccess Design and Administration Guide,
September 20, 1999.

[3] Netegrity Inc., SiteMinder Concepts Guide, 2000.
[4] Securant, Unified Access Management: A Model For In-

tegrated Web Security, Securant Technologies, June 25,
1999.

[5] K. Beznosov. Flooding and Recycling Authorizations. In
New Security Paradigms Workshop (NSPW) September
2005. Elec. and Comp. Engineering, University of British-
Columbia, March 2005.

[6] David Mazieres, Michael Kaminsky, M. Frans Kaashoek,
Emmitt Witchel. Seperating Key Management from File
System Security. In 17th ACM Symposium on Operating
Systems Principles 1999

[7] K. Beznosov. Recycling Authorizations: Toward Sec-
ondary and Approximate Authorizations Model (SAAM),
LERSSE-TR-2005-01, LERSSE, Dept. of

[8] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations,” Technical Report MTR-2547
Vol. 1, MITRE Corporation, Bedford, MA (Mar. 1973).

[9] D. Bell and L. LaPadula. Secure Computer Systems:
Unified Exposition and Multics Interpretation,” Technical
Report MTR-2997 Rev. 1, MITRE Corporation, Bedford,
MA (Mar. 1975).

[10] W. Leung, J. Krampton, K. Beznosov. Authorization Re-
cycling in BLP System. LERSSE-TR-2005-11, LERSSE,
Dept. of Elec. and Comp. Engineering, University of
BritishColumbia, November 2005.

[11] J. Musa, A. Iannino, K. Okumuto. Software Reliabil-
ity: Measurement, Prediction, Application, McGraw-Hill,
1987.

