
Abstract—  The  open  source  Gnutella  protocol  is  an 
ubiquitous  distributed  file-sharing  protocol  implemented  by 
many  file-sharing  clients.  After  various  vulnerabilities  were 
discovered  with  the  previous  0.4  version  of  the  protocol  that 
opened the network up to distributed denial  of service attacks 
and malicious file injections, the Gnutella team has managed to 
patch these vulnerabilities in the protocol’s latest 0.6 rendition. 
However,  after  extensive  research  detailed  in  this  report, 
vulnerabilities  with  the  protocol  still  exist  and  are  easily 
implemented through any of the open source Gnutella  clients. 
One particular vulnerability opens the Gnutella network up to a 
flood  of  un-regulated  files  which  could  easily  be  viruses  or 
Trojans  posing  as  searched  files  of  other  end  users.  Our 
recommendation  involves  a  voting  system  be  incorporated  in 
the next protocol version to identify malicious files or users and 
remove them from the network.

Index  Terms— Distributed  Computing,  Computer  Security, 
Computer Network Security

I.INTRODUCTION

G nutella  is an open source peer-to-peer protocol that is 

the  basis  for  many  popular  file  sharing  applications  today, 
including  BearShare,  LimeWire,  and  Phex.   During  our 
experiments  we  found  the  Gnutella  network  had  600  000 
users connected just to our subnet.  Since any vulnerability in 
the  Gnutella  protocol  would  make  all  machines  on  the 
network vulnerable to an attack, it is important that Gnutella 
be designed with security in mind.

Gnutella’s  current  official  protocol  is  the  0.4  protocol, 
which was last  modified  in  2003 [3].   There  have  been  at 
least  two security  vulnerabilities  in  this  protocol  that  were 
identified  back  in  2002,  and  can  be  used  for  a  variety  of 
malicious purposes.  However, there is a newer version of the 
protocol,  version  0.6,  which  is  currently  in  testing  [4]. 
Version 0.6 enhances  the security  of the  Gnutella  protocol, 
and makes some of the version 0.4 exploits obsolete.  While 
this  protocol  is  not  the  official  protocol  yet  (It  will  be  in 
September),  the  majority  of  major  applications  that  utilize 
the Gnutella protocol have already switched to use 0.6.

This paper aims to educate  the reader  about  the exploits 
that  already  exist  in  the  official  protocol  version,  and then 
talk  about  the  changes  that  version  0.6  will  bring.   From 



there,  we  will  outline  our  attempts  to  find  and  exploit  a 
vulnerability in the 0.6 version of the Gnutella protocol, and 
discuss  any  improvements  that  could  be  made  to  prevent 
these exploits from occurring.

II.GNUTELLA 0.4 PROTOCOL

The current  Gnutella  protocol,  version 0.4,  operates very 
differently than the newer 0.4 protocol.  The 0.4 protocol has 
no handshaking, and operates as a decentralized network of 
peers who communicate directly with each other (See Figure 
1).

Fig. 1 – The network topography of the 0.4 protocol for 
Gnutella [2]

Peers  on  the  Gnutella  network  are  normally  called 
‘servents’ as they act partly as a server and partly as a client. 
When a  servent  first  connects  to  a  network,  it  will  send  a 
PING message to any immediate  neighbour,  who will  send 
the  PING along  to  all  of  its  neighbours.   This  process  is 
repeated up to 7 times.  Any peer who receives the PING will 
respond with a PONG message  to  let  the  newly  connected 
servent know that it is responding.  From there,  the servent 
can send out QUERY messages,  which are basically  search 
strings  for  files  that  the  servent  is  trying  to  locate,  in  the 
same manner, and it will receive QUERYHIT messages from 
peers  that  have  a file  matching  the  query.   After  a  servent 
receives a QUERYHIT, that servent can immediately start a 
TCP connection  on the  specified  port  for  the  file  with the 
peer that said it had the file. 

While  this  style  of  network  layout  is  very  useful  for 
exchanging  information  in a purely P2P manner,  it  has not 
been  designed  with security  in  mind.   Firstly,  there  are  no 
controls on flow of traffic,  or verification  of identity.   The 
lack of both of these makes the network susceptible to being 
used as an agent for a Denial-of-Service attack.  Also, since 

Gnutella Peer-to-Peer Security
(April 2007)

Gurpreet Dosanjh, Brody Lodmell, Alexander Van Der Star, Shane Wang

1



there is no manner of verification that the correct file is being 
sent once a QUERYHIT is received, there is a possibility that 
a  client  might  be  sent  malicious  files  when  behaving 
correctly.   All  the  previous  work  we  found  on  Gnutella 
security in 0.4 dealt with these two vulnerabilities.

III.PAST WORK

Only one previous published attempt to analyze Gnutella’s 
network security was found in our research.  It was a paper 
released in 2002, which highlighted a couple weaknesses in 
the 0.4 protocol.  There were two attacks outlined:

DDoS attack using modified QUERYHITs.
Virus Injection using push.

The  DDoS  attack  in  this  paper  was  verified 
experimentally,  while  the  virus  injection  attack  was  only 
described theoretically [1].  We used these two attacks as the 
basis for our analysis of the 0.6 protocol of Gnutella, so it is 
important to understand how these attacks work.

IV.DDOS
The  DDoS  attack  outlined  in  [1]  uses  the 

QUERY/QUERYHIT exchange in order to perform a denial 
of  service  attack  on  a  victim  machine.   This  is  done  by 
replying  to  any  query  that  it  receives  with  a  modified 
QUERYHIT.   This  modified  QUERYHIT  message  is  the 
same  as  a  normal  QUERYHIT,  with  one  exception:  the 
‘source’ field  of the  QUERYHIT is set  to be the  IP of the 
victim  machine.   Thus,  whenever  any  machine  queries  for 
anything  that  reaches  the  malicious  peer,  an  HTTP 
connection with the victim machine will be started.  Due to 
the query-flooding nature of the 0.4 protocol, this means that 
the growth in the number of connections that will be started 
will  be  exponential  in  nature,  and  will  quickly  become 
enough  to  take  the  victim  machine  offline.   In  the  2002 
paper,  the  experimental  DDoS  attack  caused  the  victim 
machine  to  receive  more  than  80  requests  per  second,  at 
which  point  the  victim  machine  froze  and  became 
unresponsive [1].

Fig. 2 – A Gnutella 0.4 DDoS attack [1]

V.VIRUS INJECTION

The  virus  injection  attack  outlined  in  the  paper  was 
theoretically  very  simple,  but  exploited  a  vulnerability 
present  in  the  0.4  protocol.   This  vulnerability  was  that 
whenever  a  servent  sent  a  ‘push’  message  to  another 
machine,  it  would  automatically  accept  whatever  file  was 
being sent without any sort of verification.  This meant that if 
on  receiving  a  push,  the  malicious  servent  simply  sent  a 
different file, such as a virus or a Trojan, to the victim who 
sent the push, it  would be accepted unquestionably and the 
machine would be compromised.

VI.GNUTELLA 0.6 CHANGES

Gnutella 0.6 introduced many changes to the fundamental 
workings  of  the  network.   The  first  notable  change  is  the 
addition of an Ultra-peer [5]; moving the network away from 
a strictly peer to peer topography and closer to a traditional 
client  server  model.   Clients  (which  are  now  called  leaf 
nodes),  connect  to  one  or  more  Ultra-peers,  and  make 
requests through them.  Upon receiving a request, an Ultra-
peer will send requests to the other leaf nodes it’s connected 
to  on  behalf  of  that  leaf  node.   The  Ultra-peer  collects 
responses, and forwards them back to the original leaf node. 
This  completely  removes  the  query  flooding  nature  of  the 
network.

A handshaking mechanism was also added to the protocol 
[5].   The details are not relevant for our treatment but what 
is important  is that  any communication between leaf  nodes 
and Ultra-peers, or leaf nodes and other leaf nodes must be 
preceded by a handshake.  Because messages are now sent in 
direct TCP/IP connections, comparing the IP of the sender in 
the transmission layer and application layer is possible,  and 
required by the network specification [5].  This removes the 
ability to spoof a message, or appear to be another location 
on  the  network.   Handshaking  eliminates  the  DDOS 
techniques which worked on the 0.4 version of the network.

Fig. 3 - Querying a Gnutella 0.6 network

Refer to figure 3 for the following example.  Suppose that 
a leaf node p wishes to search the network.  P would send a 

2



QUERY to the Ultra-peers it is connected to (1).  Each Ultra-
peer  would  then  QUERY  leaf  nodes  (2),  and  collect  the 
QUERYHIT messages  (3)  forwarding  them  to  ‘p’ as  they 
came in (4).  ‘p’ would then handshake with the leaf nodes 
who supplied QUERYHIT messages (5), and then download 
the file (6).

At first  glance,  it  would appear  possible  to  replicate  the 
QUERYHIT attack  of  the  0.4  network  if  a  malicious  user 
acted  as  an  Ultra-peer.   This  is  not  so,  because  of  the 
handshaking  undertaken.  On a  0.4  network,  servents,  upon 
receiving a QUERYHIT, may start a HTTP connection on the 
listed source whereas in the 0.6 protocol,  the leaf node will 
send a handshake.  This handshake will be disregarded by a 
target  which  is  not  concerned  with  the  Gnutella  network. 
The  only  thing  the  malicious  Ultra-peer  will  succeed  in  is 
initiating  a  handshake  with  leaf  nodes  on  the  Gnutella 
network  with  his/her  attack  target.   The  amount  of  these 
handshake messages the Ultra-peer can send, is limited by it's 
own  bandwidth,  and  entails  a  greater  overhead  than  that 
which  will  be  placed  on  the  attack  target;  rendering  this 
attack worthless.

VII.MALICIOUS FILE INJECTION OBJECTIVES

The  Gnutella  peer-to-peer  network  protocol  is  subject  to 
many security vulnerabilities. In this part of the project, our 
objective is to implement a dynamic malicious file injection 
attack.  Due  to  the  weak  design  of  the  Gnutella  protocol, 
significantly large number of exploits may be discovered in 
the  massive  interconnected  network.  Each  Gnutella  servent 
consists of a search or message distribution engine and a mini 
HTTP  1.1  web  server.  The  Gnutella  search  engine  uses 
several descriptors for sending and receiving messages: Ping, 
Pong, Query, QueryHit and Push. Ping messages are sent by a 
servent  to  explore  active  hosts  on  the  network.  Pong 
messages are sent by active hosts in response to Ping requests 
each time the host wishes to communicate with the servent. 
Each  search  item  is  called  a  Query.  When  an  active  host 
contains the file  that  is requested by the client,  a QueryHit 
message is sent. If a host is protected by a firewall, the host 
Gnutella client uses the Push command to push the file back 
to the peer.  

Recent  publications  in  the  area  of  Gnutella  protocol 
security  provide  the  design  flaws  of  how a  malicious  file 
injection attack works, but no implementation of a dynamic 
file injection attack could be found. Older design models of 
such an attack consisted of creating numerous malicious files 
on several  hosts.  When a  client  requests  any of  these  files 
from such hosts, the malicious files with the corresponding 
name is sent.  

VIII.IMPLEMENTATION DETAILS

Our implementation consists of a dynamic  malicious file 
injection attack. Several Gnutella protocol compliant clients 
are  freely  available  on  the  Internet.  Due  to  the  high 
complexity and limited documentation of JTella,  LimeWire, 
and  Gnucleus,  Phex  3.0  proved  to  be  the  easiest  client 

understand and thus was used for this prototype. Phex 3.0 is a 
P2P  file  sharing  client  that  is  developed  using  the  Java 
language. The code base for Phex 3.0 is relatively small  in 
comparison  to  the  more  popular  clients  such as LimeWire. 
Furthermore, the Phex 3.0 Gnutella client is relatively easy to 
edit and compile using the Eclipse IDE.  

Two different  methods of  creating  malicious file  content 
were tried. When a user sends a query through the Gnutella 
network, there are two ways the file could be downloaded. A 
file can be downloaded either from a single host or it could 
download different segments of the file from multiple hosts. 
When  a  QueryHit  message  is  returned  by  a  host,  a  SHA1 
hash value of the file being requested is also returned. Once 
the  file  has  completely  downloaded  onto  the  client’s 
machine, the Gnutella client computes the SHA1 hash value 
of the file to check if it  equals to the SHA1 has value sent 
from the host. If they are equal, then the client considers the 
file to be valid, else it considers it to be corrupt. When a file 
is  split  into  different  segments  where  each  segment  is 
downloaded  from  different  hosts,  the  client  computes  a 
SHA1 hash value of each segment and another SHA1 value 
of the entire file. As each segment is downloaded, it checks if 
that segment is valid by computing the SHA1 hash value and 
comparing it to the expected value.  

Our first  approach  for  implementing  the  attack  involved 
sending  dynamic  malicious  file  segments  to  peers.  The 
Gnutella client obtains a list of hosts that have the identical 
file.  Because  multiple  hosts  contain  the  same  SHA1 hash 
value  for  each  file,  the  client  checks  for  the  most  popular 
SHA1 hash values for each segment from the different hosts. 
When  a  query  requesting  a  particular  file  segment  was 
received by our malicious host, a new malicious file segment 
was created  dynamically  with the  same  name as the  query 
request  and  sent  to  the  servent.  The  receiving  servent 
obtained  the  segment  and  computed  its  SHA1 hash.  Since 
this  hash value  was different  from the  expected  value,  the 
client  identified  the  segment  as  malicious  and  blocked  the 
download. This implementation of file verification makes it 
almost impossible to send false segments without the receiver 
discarding the data.

The  second  approach  involved  sending  a  complete  file 
from a single host. When a query is received by a modified 
host  (the  one  implemented  by  us), a  malicious  file  is 
dynamically generated by copying another file and renaming 
it to the query text. Then the vector list of the modified host 
is  updated  to  contain  the  new  file.  The  modified  host 
developed,  dynamically  creates  a  new  file  for  each  query 
received and then renamed the new file to the query text and 
responds with a QueryHit  message.  The client  now has the 
option to download the newly created malicious file.

3



Fig. 4 – Malicious File Injection Process

IX.IP LOGGING AND REVERSE DNS LOOKUP

Another feature implemented in our modified Phex client 
was IP logging and reverse DNS lookup of all clients which 
sent incoming search queries. During testing, approximately 
1,200 unique IP addresses were recorded within a period of 1 
hour. This  logging  coupled  with  the  malicious  file 
distribution could aid a malicious user in identifying victim 
computers  of  his/her  Trojan  distribution  along  with  the 
network in which they belong to. Test cases done at the UBC 
lab revealed the DNS lookup returned not only the ece.ubc.ca 
domain  but  also  the  computer  name  which  the  query 
originated.

X.TESTING

The exploit just described was executed on both a private 
and  a  public  network.  The  private  network  required  one 
computer  system to run the  modified  host,  while  the  other 
computer  system  executed  the  unmodified  client.  On  the 
other hand, in the public network, only one computer system 
running the modified host is needed and a Gnutella webcache 
is  required.  Once  the  modified  host  is  connected  to  a 
webcache,  it  proceeds  by  downloading  a  list  of  other 
Gnutella  servents  from the  public  domain  to  which  it  will 
attempt to connect to. Once connections have been made to 
one  or  more  peers,  the  modified  host  then  eavesdrops  on 
incoming  queries,  begins  to  create  dynamic  malicious files 
and  starts  to  respond  with  QueryHit  messages.  When  the 
modified  host  was  executed  on  a  live  public  Gnutella 
network, we recorded approximately 10, 000 queries within a 
seven hour execution time frame. Of these queries, 879 were 
.mp3  files,  689  were  .exe,  and  489  were  .zip.  The  totoal 
number of downloaded files from the modified host were 78 
downloads. This shows that less than 1% of the malicious file 
content was downloaded on a live network.  

Further  analysis  of  the  test  case  revealed  many  of  the 
queries  were  general  search  terms.  Thus,  since  no  query 
filtering had been applied to the modified client, these terms 
were automatically created as files. Modification of the client 
to filter  for and duplicate  only particular  file types such as 
“.mp3”  should provide  a much higher  download  rate  since 
the duplicated file would seem more authentic. Further query 
analyzing  algorithms  could  be  implemented  to  search  for 
specific keywords which would determine not only the type 
of  file  the  user  is  looking  for  but  also  possible  file  sizes. 
Doing  so,  the  client  could  utilize  more  than  one  base 
malicious  file  and  select  the  appropriate  file  based  on  the 
query  string.  Such  an  example  would  be  a  base  file  of 
Song.mp3 (4mb size)  and  Install.exe  (20mb size).  A query 
that  filters  to  a  mp3  file  type  can  use  the  base  Song.mp3 
while a query that  filters to an application  file  can use the 
Install.exe base file.

XI.RECOMMENDATIONS

The current  Gnutella  protocol  infrastructure  and protocol 
is  unable  to  handle  and  distinguish  malicious  files  from 
authentic ones. One possible implementation would be a file 
authentication rating level  based on voting by shared users. 
Files that receive over a set threshold of negative ratings can 
have  their  hash  values  blacklisted.  These  blacklists  can  be 
stored on the Gnutella webcaches and updated and retrieved 
regularly.  Threshold  values  for blacklisting  will  have  to  be 
adjusted  as  lower  threshold  values  run  the  risk  of  having 
authentic files blacklisted by malicious voters and malicious 
files  authenticated  by the  same  malicious  voters.  A second 
possible solution is to take the same voting scheme and apply 
it  at  the  servant  level.  This  way,  malicious  users  can  be 
singled  out  according  to  their  IP  address  before  they  can 
pollute the Gnutella network with too many malicious files.

XII.CONCLUSION

The  Gnutella  network  is  a  very  popular  distributed  file 
sharing  network  that  is  increasing  in  popularity.  With  the 
current  number  of  users,  security  features  of  the  protocol 
become  paramount.  Although the  newer  0.6  version of  the 
Gnutella  protocol  has  made  significant  improvements  over 
the older and vulnerable  0.4 implementation,  much work is 
still  needed to address the security weaknesses that  are still 
present. The work presented in this research demonstrates the 
alterations to a popular Gnutella client to turn it into a mass 
distribution mechanism for malicious files. 

REFERENCES

[1] D. Zeinalipour-Yazti, “Exploiting the Security Weaknesses of 
the Gnutella Protocol”, March 2002, Available: 
http://www.cs.ucr.edu/~csyiazti/courses/cs260-
2/project/gnutella.pdf
[2] K. Shen, “Computer Networks”, 2006, Available: 
http://www.cs.rochester.edu/~kshen/csc257-
fall2006/assignments/gnutella.jpg
[3] The Gnutella Developer Forum, “The Annotated Gnutella 
Protocol Specification v0.4”, Rev. 1.6, Available: http://rfc-
gnutella.sourceforge.net/developer/stable/index.html

[4] P. Kirk, “Gnutella 0.6 – Defining a Standard”, July 2003, Available: 
http://rfc-gnutella.sourceforge.net/developer/index.html

[5] The Gnutella Developer Forum, “RFC – Gnutella 0.6”, Available: 
http://rfc-gnutella.sourceforge.net/developer/testing/index.html

4

http://rfc-gnutella.sourceforge.net/developer/testing/index.html
http://rfc-gnutella.sourceforge.net/developer/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://www.cs.rochester.edu/~kshen/csc257-fall2006/assignments/gnutella.jpg
http://www.cs.rochester.edu/~kshen/csc257-fall2006/assignments/gnutella.jpg
http://www.cs.ucr.edu/~csyiazti/courses/cs260-2/project/gnutella.pdf
http://www.cs.ucr.edu/~csyiazti/courses/cs260-2/project/gnutella.pdf

	I.INTRODUCTION
	II.Gnutella 0.4 Protocol
	III.Past Work
	IV.DDoS
	V.Virus Injection
	VI.Gnutella 0.6 Changes
	VII.Malicious File Injection Objectives
	VIII.Implementation Details
	IX.IP Logging and Reverse DNS Lookup
	X.Testing
	XI.Recommendations
	XII.Conclusion

