
 1

An Analysis of Mobile Code Security

Sophie Ke (26172031), Jason Kwan (39688023),

Justine Lu (41799024), Safinaaz Rawji (32307035)

Abstract – This report discusses the advantages and
concerns of mobile code. In addition, three specific
types of mobile code are discussed: cross site scripting,
ActiveX controls, and Java applets. These were the
three forms of mobile code included in our term
project.

I. I�TRODUCTIO�

The term Mobile code has continuously
evolved ever since it was first introduced.
From one source, it is “code that is shipped
across nodes of a network, crosses protection
domains, then downloaded and automatically
executed upon arrival without explicit order
by the recipient.” In this report, it will be
simply defined as applications or scripts on
web pages, which are executed locally
without much user knowledge or
interaction[1]. If malicious mobile code
travels through protective domains, such as a
corporate network, all terminals connected to
that node could be susceptible to being
compromised. Mobile code was highly
regarded as the next generation to traditional
non-interactive Web applications in 2001
whereby making them rich in media,
graphics, audio, and video.

Although mobile code can come in various
forms, including JavaScripts, JavaApplets,
ActiveX Controls, Macromedia Flash,
Shockwave Files, and macros attached to
Office Documents, only a select few are
widely used.

As mobile code continues to gain in
popularity on web pages, this report will first
examine the advantages and concerns of
mobile code and analyze three types of
mobile code found commonly on web pages.
The three forms of mobile code that will be

discussed in this report are cross site
scripting, ActiveX controls, and Java applets.

II. ADVA�TAGES

Mobile code is flexible and supports different
mediums where the computation to execute
the code does not need to be known prior to
execution on the recipient’s system [2]. There
are many advantages of mobile code
including:

Efficiency: For repeated access to the same
application, it is efficient to send code that
can be computed at the recipient’s end
whereby it is executed and interact locally.
This can help in networks with high latency
and where interactions between server and
recipient consist of few messages [2].

Simplicity and Flexibility: When code needs
to be updated or a new installation is required,
code is available on demand to the recipient.

Storage: Loading code on demand instead of
having to install all the programs which can
be duplicated on all sites. This saves total
storage requirement [2].

Enhanced Web Browsing: Without mobile
code, it would not be possible for popular web
pages like YouTube to efficiently host media-
rich content that’s compatible with so many
platforms.

III. CO�CER�S OF MOBILE CODE

User’s safety and security are compromised
when mobile code contains malicious scripts
that, for example, creates a covert channel (a

 2

channel that is not explicitly intended for
communication [2]), allows a hacker to snoop
on a user’s computer, or allows a virus to
propagate and affect as many different
machines as fast as it can [3].

Instances where mobile code violates security
policies include:

Confidentiality: When all files that are
supposed to be kept confidential are leaked.

Integrity: Private data can be modified.

Availability: Denial of service attacks,
whereby the hacker can stop the user in
accessing certain files normally accessible to
the user.

IV. CROSS SITE SCRIPTI�G

Cross site scripting (XSS) is one of the most
dangerous and unpredictable mobile code
security threats on the Internet. XSS takes
place when someone gathers malicious data
from other users by injecting JavaScript,
VBScript, ActiveX, or HTML into seemingly
safe applications, such as java applets and
Flash animations, or into hyperlinks on a
website. Once the user executes the
application or clicks on the link, the malicious
code will be able to execute locally on the
user’s machine, thus causing damage without
the user’s knowledge of its existence.

This threat is especially common as most
forums and personal spaces nowadays allow
users to submit responses with HTML and
JavaScript embedded in them. This makes it
very convenient for attackers to encode
malicious scripts or links within their reply.
Furthermore, attackers usually encode their
malicious portion of the link in HEX or other
encoding formats, thus appearing less
suspicious to the users.

To hide the malicious act even more, the
attacker can create an output page that
appears to be valid content from the original
website, or just transfers the user back to the
original website after certain time limit.

Here is an example to demonstrate how you
would achieve cookie theft using simple
JavaScript and PHP codes [4].

First, on the website you want to steal the
session cookie from, post a message with a
link containing the following JavaScript:

javascript:document.location='/cookie.php?'+
document.cookie;

This will lead the user to a page named
“cookie.php” with their website session
cookie as the query. Once the user reaches
“cookie.php” unknowingly, all of their
information, including IP address, remote
port, user agent, request method, remote Host,
referrer, and the session cookie will be logged
by a function called “logData()”. Moreover,
all of this information will be stored in a file
called “log.txt”.

A snap shot of the main functions of the code
is shown below:

$ipLog="log.txt";
$ip = getenv("HTTP_CLIENT_IP");
$cookie =
 $_SERVER['QUERY_STRING'];
$rem_port =
 $_SERVER['REMOTE_PORT'];
$user_agent =
 $_SERVER['HTTP_USER_AGENT'];
$rqst_method =
 $_SERVER['METHOD'];
$rem_host =
 $_SERVER['REMOTE_HOST'];
$referer =
 $_SERVER['HTTP_REFERER'];
$date=date ("l dS of F Y h:i:s A");

 3

Consequently, once a user clicks on the link,
all of their information will be automatically
logged in the “log.txt” on a remote server.
The attacker can then use the information
gathered to achieve account hijacking or the
changing of user settings.

This threat is very difficult to prevent, and it
relies heavily on the security feature and
encryption power of the website, the web
browser security settings, as well as your own
personal discretion. You should always check
the links and only follows ones you trust, or
you can disable JavaScript in your web
browser, which will eliminate most of the
problem.

V. ACTIVEX CO�TROLS

An ActiveX Control is another form of
mobile code and was introduced by Microsoft
in the spring of 1996 [5]. It is an object added
to forms to enhance the user’s browsing
experience. ActiveX controls can be created
in several different languages including C++,
Java, and VisualBasic. Because of this
flexibility, ActiveX controls can be databases
and spreadsheets and they can establish
connections to other computers and networks
and then transfer files. In addition, all these
different actions can run invisibly to the user
[6]. ActiveX controls only work in
Microsoft’s Internet Explorer and also in
Netscape, if the user has an ActiveX plug-in.

Our project contained a simple ActiveX
control to demonstrate its flexibility and
ability to harm one’s computer if appropriate
security precautions are not taken. Our control
showed that a file can be downloaded into the
user’s computer and then accessed, and then
computer settings changed. In addition, these
instructions occurred invisibly to the user.

The control was created with Microsoft
Visual Basic 6.0. The control downloaded a
bitmap from the Internet. Specifically, the

URL path of the bitmap was
<http://www.ece.ubc.ca/~jmlu/412CookieMo
nster.bmp>. This bitmap was saved to the C:\
drive as “412CookieMonster.bmp”. Then a
simple instruction set this image as the
computer’s desktop wallpaper.

To include the ActiveX control in a webpage
the author uses an OBJECT tag as shown in
the following example.

<OBJECT ID="DemoControl"
CLASSID="CLSID:044721A2-C1AB-4CEA-8BA1-
DF2F82C9BE90"
CODEBASE="EECE412Demo.CAB#version=1,0,0,0">
</OBJECT>

The ID field is the name of the control. The
CLASSID is a globally unique identifier used
to identify the control and assigned by the
authoring tool. The CODEBASE contains file
identification information.

When a software developer creates an
ActiveX control two safety settings can be
set: Safe for Scripting and Safe for

Initialization. Safe for Initialization means
that the control will not do damage to a user’s
system no matter what values are passed to
the control during its startup. Safe for
Scripting means that the control cannot be
used maliciously no matter how it is
manipulated. [6] Although ActiveX controls
contain these two security settings, a
malicious ActiveX control developer can set
these two settings even if the control isn’t safe
for scripting or safe for initialization.

Authors of ActiveX controls can verify their
authorship by signing controls with programs
such as Microsoft's Authenticode and Apple's
Code Signing. Digital signatures allow a user
to verify, prior to running executable code,
that it came from the developer it says it came
from and that nobody else has modified the
code. [6] If the user trusts the signer of the
ActiveX control, it will be allowed to run with
full privileges [7].

 4

There are numerous useful ActiveX controls,
for example, from Imagestation.com and
Xanga.com that once downloaded, enable the
user to more easily upload pictures. Because
of these advantageous ActiveX controls, some
users may not realize the risk involved and
when asked to download and run an ActiveX
control from an unfamiliar webpage, may do
so willingly. When an ActiveX control wants
to be installed, the web browser displays a
message box asking if the user wants to run
the ActiveX control and if the user wants to
check off the Always trust content from box.
If the user selects this option, future controls
from the same author will download and
execute without warning. Therefore to secure
oneself from malicious ActiveX controls, the
user must properly configure their browser
security settings [5]. In addition, the user must
use their own judgment when accepting
ActiveX controls from various websites.

VI. JAVA APPLETS

Like other forms of mobile code, Java gives
developers and opportunity to integrate
powerful, cross-platform programs (applets)
into web pages. Aside from an enhanced web
browsing experience, users also face many
threats.

Some potential threats within Java, which can
violate Confidentiality, Integrity, and
Availability security policies [8] are:

Confidentiality: Mailing client machine
information (i.e. password files,) and sending
personal or company files over the network.

Integrity: Deletion or modification of files,
killing processes or threads.

Availability: Creating high priority and
resource intensive processes or threads,
creating thousands of window pop-ups.

Even though Java was designed with security
as a priority, like all other software, it also
contains vulnerabilities within its design and
source code. As known issues are constantly
being addressed and fixed through patches
and newer revisions, hackers, researchers, and
other developers are constantly finding new
exploits. However, assuming that there are no
vulnerabilities, the Java Security mechanisms
will be analyzed below.

When a web browser executes a Java applet,
there are several security mechanisms in place
which prevent applets from executing
potentially malicious commands.

The Java Virtual Machine: The Java Virtual
Machine (JVM) is intended to protect a client
machine from hostile applets downloaded
from un-trusted sources by only allowing the
applet to operate freely within the JVM or
sandbox. Some common acts which cannot be
perform by default are: reading, writing, and
executing files on a client system, making
network connections to other computers with
exception to the originating host, load
libraries onto the client machine, and directly
calling native methods.

Byte Code Verification: Byte code
verification ensures that the Java byte code,
which may not have been compiled by a Java
compiler [9], conforms to Java specifications.
The byte code verifier ensures that: each byte
code fragment is correct, pointers are not
forged, no access violations, or incorrect type
object access.

The Class Loader: The class loader within
the JVM is responsible for loading both user-
defined and Java Application Programming
Interface (API) classes into a unique
namespace. The unique namespace prevents
anther class with the same name from called
accidentally.

 5

Figure 1. Java’s Class Loader Architecture [10]

Security Manager: The Java security
manager performs run-time checks on
dangerous calls (calls which allow applets to
get out of the sandbox) and generates a
Security Exception. In short, it enforces
applet restrictions.

Code Signing: Code signing is a method for
content publishers and software developers to
digitally sign their Java applets. By obtaining
a public and private key from a Certificate
Authority (CA,) applets signed by this key are
allowed to execute commands which
unsigned applets normally cannot make.
Under default browser settings trusted and
signed Java applets are executed without
warning.

Although code signing in Java serves as a
method for legitimate applets to bypass some
of the security mechanisms, it also poses the
biggest problem if users allow un-trusted
signed applets to run. As demonstrated in our
project, anyone is capable of signing their
own applet as long as they have Java
Software Development Kit (SDK) installed.
Simple create a key with the included keytool
utility, and sign the applet with the jarsigner.

Under default browser settings, when un-
trusted signed applets are loaded, a warning
appears in the web browser which informs the
user of an unverified applet.

If the user allows this unverified applet to run,
they are essentially allowing it to run outside
of the sandbox. As a result, a client machine
may be compromised without even knowing.

To demonstrate this threat, a file was written
to the local C drive.

Figure 2. Unverified Signed Applet Warning

As Java is already quite secure, the best ways
to prevent attacks from Java applets are to
keep Java Virtual Machine, and web browsing
software up-to-date, be aware of new security
vulnerabilities, and to run signed applets with
caution.

VII. CO�CLUSIO�

As the internet continues to gain popularity,
the demand for content-rich websites
continues to grow. The use of mobile code is
the obvious choice in meeting these demands.
As discussed in this report, the advantages of
integrating mobile code into web content by
far, outweighs the disadvantages. In this
report, three forms of mobile code, commonly
found on web pages were analyzed. Cross
Site Scripting attacks are probably the hardest
to prevent since malicious scripts can be
easily placed on legitimate servers (such as
forums and blogs.) As for ActiveX controls
and Java Applets, users can be easily fooled
into executing these malicious controls and
applets as demonstrated in our project.

In all three cases, the solutions are the same.
The user must use caution when clicking on
unknown links, or when running unknown or
un-trusted mobile code.

 6

REFERE�CES

[1]Brown, L., “Mobile Code Security”, School of

Computer Science, Australian Defense Force Academy.
September 2004
<http://www.unsw.adfa.edu.au/~lpb/papers/mcode96.ht
ml>

[2]Thorn, T., “Programming Languages for mobile
code”, ACM Computer Surveys, Vol. 29 No.3, 213-
239. 1997

[3]Williamson, M., “Throttling Viruses: Restricting
propagation to defeat malicious mobile code”, HP Labs

Briston, August 2003

[4]Cgisecurity.com, “The Cross Site Scripting (XSS)
FAQ”, August 2003
<http://www.cgisecurity.com/articles/xss-faq.shtml>

[5]Fallon, Thomas J. The Internet Today. Upper Saddle
River, New Jersey: Prentice-Hall, Inc., 2001.

[6]Grimes, Roger A. “Chapter 11: Malicious ActiveX
Controls.” Malicious Mobile Code: Virus Protection
for Windows. Aug 2001. 10 Apr 2007.
<http://www.oreilly.com/catalog/malmobcode/chapter/
ch11.html>

[7]Rubin, Aviel D., Daniel Geer, and Marcus J.
Ranum. Web Security Sourcebook. USA: John Wiley
& Sons, Inc., 1997.

[8]Bank, Joseph A., “Java Security”, MIT. December
1995
<http://www-
swiss.ai.mit.edu/~jbank/javapaper/javapaper.html>

[9]Mcgraw, G. and Felten, E., “Understanding the
Keys to Java Security – The Sandbox and
Authentication”, JavaWorld. May 1997
<http://www.javaworld.com/javaworld/jw-05-1997/jw-
05-security.html?page=2>

[10]Venners, B., “Security and the Class Loader
Architecture”, JavaWorld. September 1997
<http://www.javaworld.com/javaworld/jw-09-1997/jw-
09-hood.html>

