
EECE 412 Term Project 1

Abstract— The iBib, an online bibliography system, requires

the confidentiality, integrity, and availability (CIA) policies to be

satisfied. In order to properly function as a trusted web

application, iBib needs to be more secure. This paper addresses the

problems associated with the security of iBib. Two vulnerabilities

found were SQL injection and Cross Site Scripting (XSS). These

security holes compromise the CIA policies when executed. In

SQL injection, attackers are able to log in successfully as any user

using an altered password. In XSS, simply knowing the structure

of iBib can allow severe manipulation of the application. XSS

attacks are also done by code injection. Solutions for these two

vulnerabilities are presented, as well as recommendations for

future works in iBib.

Index Terms— Cross Site Scripting (XSS), iBib, SQL

Injection

I. INTRODUCTION

Handling a huge amount of materials can be time-consuming

as the number of paper works increases. A database designed to
manage these information in an organized and systematic way
would greatly decrease the effort needed to search for any
information. By putting this system online would further
increase its usefulness since access becomes much more
convenient. iBib is designed to achieve all these goals—it is an
online bibliography database system used to store and handle
many different types of materials including papers, journals and
other types of publications [1]. It provides many other useful
functionalities such as searching for particular publication or
display statistical values such as number of times a paper has
been downloaded.

With many functionalities comes with many potential
security flaws. Threats regarding iBib are mostly related to the
languages used in development. iBib is mainly composed of two
different components: PHP and MySQL. MySQL is used to
query the database regarding information on papers and other
publishing, while PHP presents this information in a human
readable format at the same time allowing the information to be
accessible via web browsers. The database and website are all
susceptible to attacks. The following lists the potential

vulnerabilities of iBib result from the nature of MySQL and
PHP:

1. The database is vulnerable since MySQL has a weak
authentication system in which an unauthorized user is
allowed to gain full access to the database [2].

2. iBib is developed using PHP, where common mistakes
can be exploited by a malicious user and compromise
the application [3].

These vulnerabilities need to be addressed in order to

improve the security of iBib. For example, we do not want to
sacrifice confidentiality—invalid users should not be able to
login to our accounts; we also want to maintain integrity—we
do not want attackers to maliciously modify our code.
Therefore, finding security vulnerabilities and invent ways to
prevent these vulnerabilities are important.

In this report, we present two vulnerabilities we have
discovered in iBib—SQL Injection Attack and Cross Site
Scripting. Solutions to these vulnerabilities are also
recommended.

II. APPROACH TO ANALYSIS

The first step was to get iBib running. The application
requires older versions of PHP, Apache and MySQL which are
known to contain bugs which makes them vulnerable on their
own. Once installation was completed, research was done to
learn more about web applications and their common
vulnerabilities. From being more familiar (with great help from
WebGoat 1) with attacks on web applications, two
vulnerabilities were found in iBib:

• SQL Injection

• Cross Site Scripting (XSS)
After testing these vulnerabilities in iBib, an analysis was
conducted to figure out which solutions would best serve the
security holes. The solutions were realized after studying the
effects of SQL injection and Cross Site Scripting on the source
codes, MySQL database, and application itself.

1 Webgoat is a J2EE web application made to teach about the insecurities

using intentionally vulnerable lessons [5].

Security Analysis of Online Bibliography

System – iBib

Owen Yang, Alice Ho Yu Au-Yeung, Houtan Ziyaeimatin, Florence Tabamo, University of British Columbia

EECE 412 Term Project 2

III. SQL INJECTION

A. What is SQL Injection

SQL Injection is a serious threat to any database-driven
system. It allows attackers to execute unauthorized Structured
Query Language (SQL) by manipulating SQL queries to a Web
form input box to gain access to resources or make changes to
data [4]. For example, the following SQL query is used to
authenticate all staff during login:

SELECT *
FROM staff
WHERE username = uname AND password = pwd

When a user tries to login, the username and password entered

in the input fields will be used to execute the query. If the
expected result is returned, the user is authenticated. However,
most database system provides no mechanisms to validate
inputs. As a result, attackers can use the input fields to
manipulate the SQL query to achieve their purposes. The next
section is going to illustrate how an SQL Injection attack is
executed on iBib.

B. How SQL Injection Attack Exploits the Security of iBib

Users need to provide their username and password to
authenticate themselves to iBib. The username and password

that a user inputs in the login page are processed by a function
called verifySignon, which is located in the file

classes/staffQuery.php.

function verifySignon($username, $pwd) {
 $sql = "select * from staff";
 $sql = $sql." where username =
lower('".$username."') and pwd =
md5(lower('".$pwd."'))";
 $result = $this->_conn->exec($sql);
 if ($result == false) {
 $this->_errorOccurred = true;
 $this->_error = "Error verifying
username and password.";
 $this->_dbErrno =
$this->_conn->getDbErrno();
 $this->_dbError =
$this->_conn->getDbError();
 $this->_SQL = $sql;
 return false;
 }
 return $result;
}

The function executes an SQL query to verify the user.
The query returns a row from the table staff, where the

information of all staff is stored, when condition evaluates to
true. The variables $username and $pwd are first replaced with
the username and password entered by the user. Then the SQL
query will be executed. For example, if the user enters “admin”
as the username and “123456” as the password, the resulting
SQL query is:

Select *

From staff
Where username = admin AND pwd =
123456

After replacing the variables, the SQL query will be executed. If
the condition evaluates to false, an appropriate error message

is returned by the function.
When the verifySignon function was implemented, it

assumes that user will always provide the valid username and
password. However, it is not always the case. By noticing that
the verifySignon function makes no effort to validate user

inputs before replacing the variables in the SQL query, we
attempt to login by entering the following in the password field:

wrong_pwd’)) OR ((‘1’=’1

as shown in figure 1.

Fig 1. The input field where SQL injection takes place

Since the verifySignon function directly replaces the

variables in the query with the user inputs, what we have entered
manipulates the SQL query as follows:

SELECT *
FROM staff
WHERE (username = username_entered) AND
pwd=MD5(lower(‘wrong_pwd’))OR((‘1’=’1’
))

Note that this query will always evaluate to true, even though

we have entered an obviously incorrect password. We have
successfully log into iBib by maliciously manipulating the SQL
query using the input field.

C. Solutions to SQL Injection

PHP provides a setting in its initialization file called
“magic_quotes_gpc” (as shown in figure 2) to tackle the
problem of SQL Injection.

Fig 2. Line where magic_quotes_gpc is turned on or off.

EECE 412 Term Project 3

However, this design violates the design principle of
“Psychological Acceptability” because users tend to turn this
function off since it automatically replaces all quotes with
backslashes and makes the input texts difficult to comprehend.
With “magic_quotes_gpc” turned on, the attack will return the
following as demonstrated in figure 3:

Fig 3. Effects of turning magic_quotes_gpc on.

Instead, we recommend the following solutions:
1) Use the addslashes() function.

The addslashes() function can be used to manipulate user
inputs before they are used in the SQL query. It returns a
string with backslashes added in front of single quote ('),
double quote ("), backslash (\) and NUL (the NULL byte).
Use of addslashes() fucntion solves the problem introduced
by “magic_quotes_gpc” since all manipulation of inputs is
invisible to users.

2) Disallow single and double quotes as well as parentheses in
the password text area.

We are employing the design principle of “least
privilege”—since users cannot include quotes and
parentheses in their passwords, they do not need to enter
these characters in the password field.

3) Parse user inputs for quotes and parentheses.
We are employing the design principle of “complete
mediation”—password is checked every time it is entered.

IV. CROSS SITE SCRIPTING

A. What is Cross Site Scripting?

Cross site scripting (XSS) is a type of attack that can severely
interfere with a web page’s integrity. XSS attacks can also
interfere with a web application’s availability and
confidentiality. XSS works with an attacker inserting malicious
HTML, Java, and other scripts to have the web site, an assumed
trusted source, to steal sensitive information and to crash
servers. For example, the script:

<script> alert(document.cookie) </script>

will cause the web page’s cookie to pop up on the internet
browser. The reason XSS remains a problem is because the task
of validating all user inputs is tedious and error-prone,
especially for large applications [7].

B. Cross Site Scripting in iBib

Since iBib is an open source application, its directory
structure and installation scripts are available to anybody who

wishes to view them. The address in which the XSS attack takes
place is http://localhost/webbiblio/install/index.php. The
attacker can know where to look for the installation scripts and
which fields can be modified. In this case, the “database name”
field is where the code is injected. The steps for XSS in iBib are
as follows:

1. The attacker opens the webpage index.php in the

install folder. Same file name is used, except under
different directory.

Fig 4. Input field where XSS attack can take place.

2. Once the webpage is open, the attacker can enter the

database name as follows:

database_name”);echo (“I CRACKED
your system.

Fig 5. Injected XSS code in iBib.

When attacker enters the above string, the phrase “I

CRACKED your system” will be shown in all

pages.

EECE 412 Term Project 4

Fig 6. Result of XSS example.

The reason for this is in the file index.php, the following line
exists:

<tr><td>Database
Name:</td><td><input type="text"
name="db"
value="webbiblio"></td></tr>

index.php calls the file write_config.php that in turn, will write
to database_constants.php. The user input will then be inserted
within the file and so the result in database_constants.php is :

define("OBIB_DATABASE", "webbiblio");
echo (“I CRACKED your system.”);

Fig 7. Changes shown if database_contants.php file.

This attack can be done in all the text fields provided in the
address http://localhost/webbiblio/install/index.php. The
example provided is a simple and harmless piece of code. If in
fact, an attacker was to compromise the integrity of iBib, they
would be able to inject their malicious script quite easily since
there is no limit in the size of the string.

C. Solution to XSS

The solutions to the Cross Site Scripting problem are simple.
The first solution is to make the file database_constants.php a
read-only file. The reason for this is to disallow changes to be
made to this file. The input field should only allow a limited
number of characters so that long lines of code cannot be
inserted. Also, the input should be parsed for illegal characters
since this would be an indication of XSS. This will allows XSS
attacks to be filtered out [8].
 The second solution is to remove the installation folder to
prevent anybody from accessing and maliciously modifying this
folder. Once there is no access to the install folder, nobody can
have access to the address
http://localhost/webbiblio/install/index.php, where the XSS
attack takes place.
 In both solutions, database_constants.php is prevented from
being modified since this is the file which is manipulated and
where the injected code runs.

V. DISCUSSION

This project was successful in that vulnerabilities were found
and solutions were given. These vulnerabilities are common in
web applications. If one was to further analyze the security of
iBib, more security holes would be found because iBib is in its
initial version.

The confidentiality, availability, and integrity (CIA) security
policies would be compromised if any of SQL injection or XSS
attacks were to be successful. This report presents solutions to
the problems addressed. Using SQL injection, unauthorized log
in was allowed – a feat which compromises the confidentiality
of iBib. Only authorized users should be able to access their
own accounts. Academic work could be submitted using
another hacked account – resulting in deception of the integrity
of the system. By doing an XSS attack, all of the CIA policies
can be dishonored, depending on the degree of the attack. An
XSS attack in iBib can range from simply appending a string
onto the application, to inserting spy ware or crashing iBib
itself.

VI. RECOMMENDATIONS

These two attacks are both of the same type which is code
injection. One major recommendation is to validate user’s
inputs as to prevent an attacker to inject a script, whether it be
SQL injection or Cross Site Scripting. If the user’s inputs are
checked for possible scripts, then the likelihood of the said
attacks can be decreased or even eliminated completely.

The files containing crucial constants should not be
modifiable.

Application of “least privilege” design principle should be
enforced so that no access to the install folder is allowed after
installation.

These recommendations brings iBib one step closer to being
a more secure web application.

ACKNOWLEDGEMENT

We would like to thank Konstantin (Kosta) Beznosov for
taking the time to meet and help with queries regarding iBib.

REFERENCES

[1] K. Beznosov. "Project_EECE496-IBib." LERSSE:
Project_EECE496-IBib. 20 Apr. 2006. 4 Feb. 2007
https://lersse.ece.ubc.ca/tiki-index.php?page=Project_EECE496
-iBib

[2] N. Davies. MySQL Vulnerabilities. 5 February
2007.http://www.linuxdevcenter.com/pub/a/linux/2002/12/16/in
securities.html

[3] P. Dickinson. "Top 7 PHP Security Blunders." Site Point. 21
Dec. 2005. 4 Feb.
2007http://www.sitepoint.com/article/php-security-blunders

[4] "Part IV. Security." PHP. 2001. The PHP Group. 4 Feb. 2007.
http://www.php.net/manual/en/security.php

[5] "WebGoat Provides a Safe Place to Learn Application Security."
Security. 3 Apr. 2006. ITworld.com. 4 Feb. 2007.
http://security.itworld.com/4367/nls_security_webgoat_060404/
page_1.html

EECE 412 Term Project 5

[6] What is SQL Injection?
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci100
3024,00.html

[7] D. Scott. and R. Sharp. Developing Secure Web Applications.
IEEE Internet Computing. Vol. 6, Issue 6, Page 38, 2002.

[8] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting. 20th

IFIP International Information Security Conference. May 30 - June 1,
2005, Makuhari-Messe, Chiba, Japan.

