
Classification of SQL Injection Attacks
San-Tsai Sun, Ting Han Wei, Stephen Liu, Sheung Lau

Electrical and Computer Engineering, University of British Columbia
{santsais,tinghanw,stephenl,sheungl}@ece.ubc.ca

Abstract—Most web applications deployed today are vulnera-
ble to SQL injection attacks. The reason for this pervasiveness
is that web applications and detection systems do not know
the attacks thoroughly and use limited sets of attack patterns
during evaluation. To address this problem, this paper presents a
semantic-aware, easy to comprehend SQL injection attack model
and classification scheme. The proposed classification covers
aspects of SQL injection attacks that are not included in existing
classification schemes. To evaluate the classification scheme, we
build an attack repository by collecting SQL injection attacks
from various internet sources. This classification and repository
can be used to help developers and administrators understand
better SQL injection attacks and evaluate defending mechanism
more thoroughly.

Last Modification Date: 2007/11/17

Revision: #14

Index Terms—SQL Injection Attacks, Classification, Web Ap-
plication Security, Intrusion Detection

I. INTRODUCTION

SQL injection is a class of code-injection attacks in which
input data provided by a user is included in a dynamically
constructed SQL query and treated as SQL code[1]. For
database-reliant web sites, SQL injection vulnerabilities are
frequently exploited by attackers since they are easy to find
and penetrate[2], [3], [4], [5], [6]. A study conducted in 2005
by the Gartner Group found that on over 300 tested web sites,
97% were vulnerable to SQL injection attacks[7], [1]. Upon
detecting SQL injection vulnerabilities, attackers commonly
extract or modify data from the compromised web site. How-
ever the threats posed by attackers go beyond simple data
manipulation[2], [3], [4]. Through SQL injection attacks, an
attacker may extract undisclosed data, bypass authentication,
escalate privileges, modify the content of the database, execute
a denial-of-service attack, or execute remote commands to
transfer and install software[2], [3], [4].

The root cause of such prevalent SQL injection vulnerabil-
ities is that web applications and intrusion detection systems
use only limited set of attack patterns for evaluation[8], [9],
[10], [11]. Sophisticated attacks that employ evasion tech-
niques can easily circumvent most of the detection mech-
anism employed today[8]. In addition, even if the injected
code is intercepted before execution, administrators are often
presented with information that does not identify clearly the
association between the commands that were attempted, the
assets that were at risk, the threats that were imposed, and the
countermeasures he/she has at disposal.

To address these issues, a repository of SQL injection
attacks that are classified in a semantic-aware, easy to compre-

hend model is needed. Previous efforts have focused on clas-
sifying web-based attacks in general, of which SQL injection
is classified as a special form of code injection attack [12].
One classification that focuses primarily on SQL injection
attacks has been conducted by Halfond, Viegas, and Orso [1].
In that paper, the attacks are classified according to injection
mechanism, attack intent, and the attack type. However, many
aspects of SQL injection attacks, such as evasion techniques,
result retrieval techniques, assets, threats, vulnerabilities, the
DBMS in question, and countermeasures, are not included.
Moreover, semantic relations between the categories are not
established, making the classification difficult to comprehend
in a broad perspective.

This paper presents an improvement on existing classifi-
cations by proposing a new classification model that has the
properties of being mutually exclusive, exhaustive, unambigu-
ous, repeatable, accepted, and useful[13]. To evaluate the clas-
sification scheme, we build an attack repository by collecting
SQL injection attacks from white papers, technical reports,
web advisories, hacker on-line communities, web sites, and
mailing lists. The proposed classification model is used to
organize the entries within the repository of SQL injection
attacks, of which two entries will be detailed as examples in
this paper. This repository of SQL injection attacks can be used
to help programmers and designers understand SQL injection
attacks more thoroughly. It can also be used in the evaluation
of defensive coding practices and intrusion detection systems.
Also, the classification scheme is constructed in such way
that security professionals or server administrators are able
to identify which attacks may be particularly relevant to them,
and conduct an automated evaluation of their server’s security.

The rest of the paper is organized as follows. In Section
II we present a SQL injection attack model. Our proposed
classification scheme is discussed in Section III. Examples of
applying the classification scheme are given in Section IV.
The evaluation of the classification model will be found in
Section V. Finally, we conclude and suggest future possible
applications in Section VI.

II. SQL INJECTION ATTACK MODEL

An SQL injection attack has a set of properties, such
as assets under threat, vulnerabilities being exploited and
attack techniques utilized by threat agents. We introduce a
model that represents properties associated with an attack and
relationships between those properties. Figure 1 illustrates the
SQL injection attack model. The semantic representation of a
SQL injection attack model is as following:

• Threat agents attempt to gain access to particular assets

2

and impose particular threats by utilizing particular at-
tacks techniques.

• The attack targets particular DBMS with particular inten-
tions by exploiting particular vulnerabilities.

• The attack employs particular evasion techniques in order
to evade detection.

• The owners of assets could deploy particular countermea-
sures to eliminate vulnerabilities.

An SQL injection attack described using the aforementioned
attack model can help developers and administrators to better
understand attacks and build more secured applications. The
SQL injection attack model serves as the blueprint of our
classification.

III. CLASSIFICATION

The detail feature set of every property in the SQL injection
attack model is identified in this section.

A. Attack Intention
When a threat agent utilizes a crafted malicious SQL input

to launch an attack, the attack intention is the goal that
the threat agent tries to achieve once the attack has been
successfully executed.

• Identifying Injectable Parameters:
Injectable parameters are input data within a HTTP
request which are directly used by server-side program
logic to construct SQL statement without sufficient input
validation. In order to launch an successful attack, a
threat agent must first discover which parameters within
a HTTP request of a specific URL are vulnerable to SQL
injection attack.

• Identifying Database Finger-Print:
Database finger-print is the information that identifies
a specific type and version of database system. Every
database system employs a different proprietary SQL
language dialect. For example, the SQL language em-
ployed by Microsoft SQL server is T-SQL while Oracle
SQL server uses PL/SQL . In order for an attack to be
succeeded, the attacker must first find out the type of and
version of database deployed by a web application, and
then craft malicious SQL input accordingly.

• Discovering Database Schema:
Database schema is the structure of a database system.
The schema defines the tables, the fields in each table,
and the relationships between fields and tables. Database
schema is used by threat agents to compose a correct
subsequent attack in order to extract or modify data from
database.

• Bypassing Authentication:
Authentication is a mechanism employed by web appli-
cation to assert whether a user is who he/she claimed to
be. Matching a user name and a password stored in the
database is the most common authentication mechanism
for web applications. Bypassing authentication enables an
attacker to impersonate another application user to gain
un-authorized access.

• Extracting Database Data:

Database data used by a web application could be sen-
sitive and highly desirable to threat agents. Attacks with
intention of extracting data are the most common type of
SQL injection attacks.

• Modifying Database Data:
Database data modification provides a variety of gains for
a threat agent. For instance, a hacker can pay much less
for a online purchase by altering the price of a product in
the database. Or, the threads in a online discussion forum
can be modified by an attacker to launch subsequent
Cross-Site-Scripting attacks.

• Downloading File :
Downloading files from a compromised database server
enable an attacker to view file content stored on the
server. If the target web application resides on the same
host, sensitive data such as configuration information and
source code will be disclosed too.

• Uploading File :
Uploading files to a compromised database server enable
an attacker to store any malicious code onto the server.
The malicious code could be a Trojan, a back door
or a worm that can be used by an attacker to launch
subsequence attack.

• Executing Remote Commands:
Remote commands are executable code resident on the
compromised database server. Remote command execu-
tion allows an attacker to run arbitrary programs on the
server. Attacks with this type of intention could cause
entire internal networks being compromised.

• Escalating Privilege :
Privileges are described in a set of rights or permissions
associated with users. Privilege escalation allows an at-
tacker to gain un-authorized access to a particular asset by
associating a higher privilege set of rights with a current
user or impersonate a user who has higher privilege.

B. Assets
Assets are information or data an unauthorized threat agent

attempt to gain.
• Database Server Fingerprint:

The database server fingerprint contains information
about the database system in use. It identifies the spe-
cific type and version of the database, as well as the
corresponding SQL language dialect. A compromise of
this asset may allow attackers to construct malicious code
specifically for the SQL language dialect in question.

• Database Schema:
The database schema describes the server’s internal ar-
chitecture. Database structure information such as table
names, size, and relationships are defined in the database
schema. Keeping this asset private is essential in keeping
the confidentiality and integrity of the database data. A
compromise in the database schema may allow attackers
to know the exact structure of the database, including
table, row, and column headings.

• Database Data:
The database data is the most crucial asset in any database
system. It contains the information in the tables described

3

Fig. 1. SQL injection attack model.

in the database schema, such as prices in an online store,
personal information of clients, administrator passwords,
etc. A compromise in the database data will usually result
in failure of the system’s intended functionality, thus, its
confidentiality and integrity must be protected.

• Host:
A host is a discrete node in any network, usually uniquely
defined with an IP address. It may have various privileges
in a network and may be a database server or a regular
computer terminal.

• Network:
A network interconnects numerous hosts together and
allows communication between them. A compromise in
a network will most likely compromise every host in the
network. Some networks may also be interconnected with
other networks, furthering the potential damage, should
an attack be successful.

C. Threats

Threats are potential violation of security. There are four
types of threats: disclosure, deception, disruption and usurpa-
tion.

• Disclosure: Unauthorized access to information.
• Deception: Acceptance of false data. Examples of de-

ception are modification of data, spoofing, repudiation of
origin and denial of receipt.

• Disruption: Interruption or prevention of correct opera-
tion. Examples of disruption are modification of data, and
denial of service.

• Usurpation: Unauthorized control of some or all parts of
the system. Examples of usurpation are modification of
data, spoofing, delay of service and denial of service.

D. Vulnerabilities
• Insufficient Input Validation:

Input validation is an attempt to verify or filter any given
input for malicious behavior. Insufficient input validation
will allow code to be executed without proper verification
of its intention. Attackers taking advantage of insufficient
input validation can utilize malicious code to conduct
attacks.

• Privileged Account:
A privileged account has a degree of freedom to do
what normal accounts can not. Its actions may also be
exempt from auditing and validation. This presents a
vulnerability since a jeopardized privileged account, such
as an administrator account, can compromise much more
than what a jeopardized regular account can.

• Extra Functionality:
Extra functionalities meant to provide a broader range
of usage may be a vulnerability since a combination of
these functionality may result in unintended actions. For
example, xp cmdshell is meant to provide users with a
way of executing operating system commands, but is
commonly used to added unauthorized users into the
operating system.

E. Attacks Techniques
Attack techniques are the specific means by which a threat

agent carries out attacks using malicious code. Threat agents
may use many different methods to achieve their goals, often
combining several of these sequentially or employing them in
different varieties [1].

• Tautology:
This technique relies on injecting statements that are
always true so that queries always return results upon

4

evaluation of a WHERE conditional. A common example
would to be inject a ”or 1=1” into the ”login” parameter.

• End of Line Comment:
After injecting code into a particular field, legitimate code
that follows are nullified through usage of end of line
comments. An example would be to add ”- -” after inputs
so that remaining queries are not treated as executable
code, but comments. This is useful since threat agents
may not always know the syntax or fields in the server.

• Illegal/Logically Incorrect Query:
This technique is usually used by the threat agent during
the information gathering stage of the attack. Through
injecting illegal/logically incorrect requests, an attacker
may gain knowledge that aids the attack, such as finding
out the injectable parameters, data types of columns
within the tables, names of tables, etc.

• Union Query:
Threat agents use this technique to guide servers to
return data that were not intended to be returned by the
developers. A common example would be to add the
statement ”UNION SELECT”, along with an additional
target dataset so that queries return the union of the
intended dataset with the target dataset.

• Piggy-backed Query:
The threat agent may add additional queries beyond the
intended query, effectively ”piggy-backing” the attack on
top of a legitimate request. This technique relies on server
configurations that allow several different queries within
a single string of code. For example, the threat agent
may add a query delimiter such as ”;”, and then follow
up with a command of his/her own, such as ”drop table
<name>”, which effectively deletes the table specified.

• System Stored Procedure:
Database server often ship with system stored procedures
that programmers may use when developing application.
If the threat agent has knowledge of which back-end
server is running, he/she may be able to exploit these
stored procedures to perpetrate their attacks. Stored pro-
cedures may yield results that go beyond the database
itself, but also interact with the OS, for example.

• Blind Injection:
With sufficiently secure systems, threat agents may probe
for vulnerable parameters or extract data by using this
technique. Blind injection allows threat agents to infer the
construct of the database through evaluating expressions
that are coupled with statements that always evaluate to
true and statements that always evaluate to false. For
example, the threat agent can add ”and 1=0 –” for one
attempt, while ”and 1=1 –” is used for another attempt,
both added onto the same query. Through examining the
behavior of the server, the threat agent may then deduce
whether the particular parameter is vulnerable or not,
where the two attempts result in the same behavior, the
parameter is secure, while different behavior resulting
from the two statements suggest that the parameter is
vulnerable.

• OPENROWSET Result Retrieval:
When trying to exploit SQL injection in an application,

an attacker needs a method of retrieving the results. The
OPENROWSET function allows a user in SQL Server to
open remote data sources. The function OPENROWSET
is most commonly used to pull data into SQL Servers to
be manipulated. They can however also be used to push
data to a remote SQL Server. Below is an example of
pushing data to an external data source:
insert into
OPENROWSET(’SQLoledb’,
’server=servername;uid=sa;pwd=HACKER’,
’select * from table1’)
select * from table2

In the example above, all rows in table2 on the local
SQL Server will be appended to table1 in the remote
data source.

F. Evasion Techniques
Evasion techniques are obscuring techniques employed in an

attack to avoid detection by signature-based detection systems
[8]. In the context of SQL injection detection, a signature is the
pattern of known attack strings. SQL injection attack occurs
when input string alter the intended syntactical structure of
SQL statement. Thus, an attack signature usually consist of
one or more SQL keywords, deliminators and expressions.
Signature-based detection systems build a database of attack
signatures, and then examine input strings against the signature
database at runtime in detection of attacks. Evasion techniques
obscure input strings, making look different but yielding the
same results when executed by a database server.

• Sophisticated Matches: One of the common signatures
used by such mechanisms is some sort of variant on the
famous OR 1=1 attack. Sophisticated matches evasion
technique uses alternative expression of ”OR 1=1”. For
example: OR ’Unusual’ = ’Unusual’ , OR ’Simple’ =
’Sim’+’ple’, OR 2 > 1 and OR ’Simple’ BETWEEN ’R’
AND ’T’ all have the same effect as ”OR 1=1”.

• Hex Encoding
Hex encoding evasion technique uses hexadecimal en-
coding to represent a string. For example, the string ’SE-
LECT’ can be represented by the hexadecimal number
0x73656c656374, which most likely will not be detected
by a signature protection mechanism.

• Char Encoding:
Char encoding evasion technique uses build-in CHAR
function to represent a character. For example, the string
’SELECT’ can be represented by the CHAR function as
char(73)+char(65)+”LECT”, which make it very difficult
for detection system to build a signature that match it.

• In-line Comment:
In-line comment evasion technique obscures input strings
by inserting in-line comments between SQL keywords.
For instance, /**/UNION/**/SELECT/**/name can es-
cape detection from signatures that expects white space
between SQL keywords.

• Dropping White Space:
Dropping white space evasion technique obscures in-
put strings by dropping white space between SQL

5

keyword and string or number literals. For example,
OR’Simple’=’Simple’ works exactly the same way as OR
’Simple’ = ’Simple’, but has no spaces in it, make it
capable of evading any spaces based signature.

• Break Words in the Middle:
With MySQL, the in-line comments would not work as
a replacement for a space. The in-line comments can
be used in MySQL to break words in the middle, for
instance: UN/**/ION/**/ SE/**/LECT/**/ is evaluated
as UNION SELECT.

G. DBMSs
Although every database management system in the market

support ANSI/ISO standard Structured Query Language , each
vender also develops a proprietary SQL language dialect.
Almost every SQL injection attack within attacks we found
target a specific database. Common targeted DBMSs are list
as follows:

• MS SQL Server
• MySQL
• Oracle
• DB2
• Sybase
• Informix

H. Countermeasures
There are a number of ways a programmer/system admin-

istrator can prevent or counter attacks made on their systems.
• Parameterized Query:

Parameterized query is parameterized database access
API provided by development platform such as Pre-
pareStatement in Java or SQLParameter .NET. Instead of
composing SQL by concatenating string , each parameter
in a SQL query is declared using place holder and input
is provided separately.

• Least Privilege:
The account that an application uses to access the
database should have only the minimum permissions
necessary to access the objects that it needs to use.

• Different Accounts:
Use a different database account for a task that requires
a different level of privilege.

• Customized Error Message:
Threat agents may gain access to knowledge through
overly informative error messages, yet completely re-
moving error messages makes debugging a difficult task.
Customized error messages hinder the reconnaissance
progress of threat agents, particularly in deducing specific
details such as injectable parameters, etc.

• System Stored Procedure Reduction:
Once a threat agent gains knowledge of which back-end
server is used, he/she has knowledge of an entire set of
system stored procedures that are available. By limiting
the system stored procedures one can execute on a server,
especially the processes that are not used, one can reduce
or even eliminate vulnerabilities that may arise from these
stored procedures.

• SQL Keyword Escaping:
Escape specific SQL keyword or deliminator in the input
string.

• Input Variable Length Checking:
By checking for input variable length, malicious code
strings beyond certain length limits will not be applicable.
Even if the length limitation is long enough to fit a few
additional queries, the inability to input an infinitely long
string disables the threat agent from employing evasion
techniques such as encoding, and consequently, allows
signature based detection mechanisms to intercept simple
attacks.

IV. EXAMPLES OF ATTACK CLASSIFICATION

This section illustrates how the classification scheme dis-
cussed in the previous section can be used to categorize an
SQL injection attack.

A. Example 1
As the first example, let us consider the following attack:

’ UNION SELECT ’_HACKER’,TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES --

The result of this attack is that the database returns a dataset
that is the union of the results of the original first query and
the list of all table names in the database. The above attack
string can be categorized as following:

• Threat agents attempt to gain database schema assets on
the database host.

• Threat agents impose disclosure threats on the asset and
exploit insufficient input validation vulnerability of the
web application.

• The attack utilizes end of line comment, and union query
attacks techniques.

• The intention of the attack is to discover database
schema.

• There are no evasion techniques used in order to evade
detection.

• The DBMS that is vulnerable to this attack is MS SQL
Server and Sybase.

• The owner of asset could deploy parameterized query,
SQL keyword escaping and input variable length checking
countermeasures to eliminate vulnerabilities.

B. Example 2
As the second example, let us consider the following attack:

/* */declare/* */@x/* */as/* */varchar
(4000)/* */set/* */@x=convert(varchar
(4000),0x6578656320206D61737465722E2E
78705F636D647368656C6C20276E657420757
36572206861636B6572202F6164642027)/*
/exec/ */(@x)

The above attack uses hexadecimal encoding and in-line
comment evasion technique to obscure following attack string:

exec master..xp_cmdshell ’net user hacker

6

1234 /add

Once the injected code has been executed by database
server, this attack adds a new user named ”hacker” with the
password ”1234” to the operating system. This attack string
can be categorized as following:

• Threat agents attempt to gain access to host and internal
network.

• Threat agents impose deception and usurpation threats
on the assets, and exploit insufficient input validation and
privileged account vulnerabilities of the web application.

• The attack utilizes end of line comment, piggy-backed
query, and system stored procedure attacks techniques.

• The intention of this attack is privilege escalation.
• The threat agent employs dropping white space, in-line

comment and hexadecimal encoding evasion techniques
in order to evade detection.

• DBMS vulnerable to this attack is MS SQL Server.
• The owner of asset could deploy parameterized query,

different accounts, least privilege, system stored pro-
cedure limitation, SQL keyword escaping, and input
variable length checking countermeasures to eliminate
vulnerabilities.

V. EVALUATION

The space of real attacks is unlimited. However, a new
attack is usually a variation of an existing type of attack. In
order to quantitatively test how large a fraction of attacks the
classification covers, we build a repository by collecting SQL
injection attacks from white papers, technical reports, web
advisories, hacker on-line communities, web sites, and mailing
lists. Entries within the repository of SQL injection attacks
are categorized based on the proposed classification scheme.
The result shows the classification is unambiguous: clear and
precise so that classification is not uncertain, regardless of who
is classifying. The classification is also repeatable: repeated
applications result in the same classification, regardless of who
is classifying.

VI. CONCLUSION

SQL injection attacks are prominent in today’s web ap-
plication as shown in the Gartner Group study[7], [1]. By
taking advantage of the server’s vulnerabilities, an attacker
may find themselves able to freely edit an online store’s prices,
extracting personal data from a corporate database, or simply
deleting the database and shutting down the network. This
paper presented a new classification model in regards to SQL
injection attacks, with properties of being mutually exclusive,
exhaustive, unambiguous, repeatable, and useful [13].

By allowing programmers and system administrators to
understand the attacks more thoroughly, more attacks will
be detected and more countermeasures will be introduced
into the systems. The proposed model defines attacks by
means of behavior, instead of signature, in order to circumvent
various evasion techniques used by the attacker. By splitting
the classification into the aforementioned categories, system
administrators can clearly see the exact intentions of an

attack, how and what it attacks, and most importantly, how
to implement countermeasures.

As seen in the examples, this model is easy to use,
yet gives a complete description of the attack. Results are
clear and unambiguous and do not contain any uncertainty.
Classification selections are specific, do not overlap, and are
exhaustive in certain categories. In the event of a new attack
or evasion technique, the user can easily add an entry to the
corresponding class.

Future attempts should focus on maintaining a complete and
up-to-date repository of known SQL injection attacks. This
ensures that an attack on one database server will result in
a prevention on the other. Knowledge and awareness of SQL
injection attacks is also essential. Repositories should be made
public, along with voluntary reports of attacks.

REFERENCES

[1] J. V. William G.J. Halfond and A. Orso, “A classification of sql injection
attacks and countermeasures,” 2006.

[2] C. Anley, “Advanced sql injection in sql server application,” Technical
report, NGSSoftware Insight Security Research (NISR), 2002. [Online].
Available: http://www.nextgenss.com/papers/advanced sql injection.pdf

[3] C. Cerrudo, “Manipulating microsoft sql server using sql injection,”
Technical report, Application Security, Inc., 2003. [Online]. Available:
http://www.appsecinc.com/presentations/Manipulating SQL Server

Using SQL Injection.pdf
[4] C. Anley, “(more)advanced sql injection in sql

server application,” Technical report, NGSSoftware In-
sight Security Research (NISR), 2002. [Online]. Available:
http://www.nextgenss.com/papers/more advanced sql injection.pdf

[5] K. Spett, “Sql injection: Are your web applications vulnerable?”
Technical report, SPI Dynamics, Inc., 2005. [Online]. Available:
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

[6] ——, “Blind sql injection: Are your web applications vulnerable?”
Technical report, SPI Dynamics, Inc., 2005. [Online]. Available:
http://www.spidynamics.com/whitepapers/Blind SQLInjection.pdf

[7] W. G. Halfond and A. Orso, “Amnesia: Analysis and monitoring for
neutralizing sqlinjection attacks,” in 20th IEEE/ACM International Con-
ference on Automated Software Engineering., Long Beach, California,
USA, 2005, p. 174.

[8] A. S. Ofer Maor, “Sql injection signatures evasion,”
White Paper, Imperva Inc., 2005. [Online]. Available:
http://www.imperva.com/application defense center/white papers/
sql injection signatures evasion.html

[9] D. Litchfield, “Data-mining with sql injection and infer-
ence,” Technique Report, An NGSSoftware Insight Security
Research (NISR) Publication, 2005. [Online]. Available:
http://www.ngssoftware.com/research/papers/sqlinference.pdf

[10] S. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql injection
attacks,” in American Conference on Neutron Scattering, College Park,
Maryland, USA, 6-10 June 2004, pp. 202–302.

[11] B. W. W. G. T. Buehrer and P. A. G. Sivilotti, “Using parse tree
validation to prevent sql injection attacks,” in International Workshop
on Software Engineering and Middleware, Lisbon, Portugal, September
2005.

[12] “A new taxonomy of web attacks suitable for efficient encoding,”
Computers & Security, vol. 22, no. 5, pp. 435–449, 2003.

[13] E. Amoroso, Fundamentals of Computer Security Technology. Prentice-
Hall PTR, 1994.

