Mac OS X Malware Vulnerabilities
(November 2008)

Michael Grebenyuk, Albert Sodyl, Byron Thiessen, Sijia Wang

Abstract—Mac OS X is commonly known to be a secure
operating system however this is a misconception. Mac OS X
does have security flaws and a proof-of-concept virus was created
by the authors to exploit universal binary files. This virus infects
other binaries on the system and captures private user data,
emailing it to the attacker. There are several possible defence
strategies to defend against exploits such the one presented. These
include prevention using stricter access control with sandboxing,
and detection by various methods such as signature detection,
change detection, and activity scanning.

Index Terms—Computer security, computer viruses

1. INTRODUCTION

APPLE advertises their Mac OS X operating system as
being very secure through their marketing campaigns. A
quote from their website claims that it “delivers the highest
level of security through the adoption of industry standards,
open software development and wise architectural decisions.
Combined, this intelligent design prevents the swarms of
viruses and spyware that plague PCs these days”

As a result of this, and the lack of prevalent malware on the
platform, many Macintosh users believe that Mac OS X really
Advertisements such as the popular Mac vs. PC
commercials only contribute to the hype, even for non-
Macintosh users. Therefore, most are oblivious to malware
threats on Mac OS X. However, the security of Mac OS is a
myth, as it has vulnerabilities just like other operating systems,
and should exploits become more common, it would
significantly increase the risk of using a Mac OS X

This project analyzes how effective the security of Mac OS
X really is when it comes to malware, such as viruses and
spyware. By presenting a working exploit in the form of a
Mac OS X virus that does alarmingly malicious actions, we
hope to gain the attention of Mac OS X users and provide
insight on how Mac OS X is just as vulnerable as other
operating systems, and present strategies for defending against
such threats.

1S secure.

II. BINARY FORMATS

A. Mach-O Format

Operating systems use various object formats to store
executable code and their libraries and associated metadata.
They act as blueprints for mapping out processes images in
memory. Object files are created by compilers or assemblers

and read by the operating system loader for that object format.
Various object formats exist, such as ELF, PE/COFF, and
Mach-O.

The Mach-O (Mach Object) object format is used by
operating systems based on the Mach kernel, such as
NeXTSTEP and Mac OS X. The Mach-O format provides
both intermediate and final storage of the machine code and
data. Features for dynamic linking were later added on top of
the statically linked executable code at runtime, resulting in a
single file format that is both dynamic and statically linked.
The basic Mach-O file contains three major regions .

Header

Load commands

Sagment command 1

Segment command 2

Data

Section 1 data

Seclion 2 data

Sagment 1

Section 3 data

Section 4 data

Section 5 data

Segment 2

Sectlon n data

'f‘i_]_‘f . ||

Fig. 1. Mach-O file format basic structure. The 3 main regions are header,
load commands and sections. Each segment command has zero or more
section commands associated with it.

At the beginning of every Mach-O file is a header
mach_header that identifies the file as a Mach-O type using a
magic number Oxfeedface. The header also contains
information such as the CPU type, file type, total size of the
load commands and various other flags that will affect the
interpretation of the rest of the file. The mach header
structure is as follows:

struct mach header {

uint32 t magic;
cpu_type t cputype;
cpu_subtype t cpusubtype;
uint32 t filetype;
uint32 t ncmds;
uint32 t sizeofcmds;
uint32 t flags;

Common CPU types supported include PowerPC (0x12)
and x86 (0x7). CPU subtypes define specific models of
processors and are usually 0x0 for PowerPC and 0x3 for Intel
binaries.

Following the header are a series of load commands that
specify the layout and linkage characteristics of the file.

struct load command {
uint32 t cmd;
uint32 t cmdsize;
bi
This structure specifies the initial layout of the file in virtual
memory, the initial execution state of the main thread of the
program as well as location of symbol tables and names of
shared libraries. The most important load commands are
LC SEGMENT, LC THREAD, and LC UNIXTHREAD. In
particular, LC THREAD holds the initial state of the registers
when a thread starts, this load command can be used to
retrieve or modify the entry point of a thread.
The third section of the Mach-O is the Data section which is
divided into one or more segments each containing zero or
more sections pointed to by an LC_SEGMENT load command
Fig. 1). Each segment defines a region of virtual memory that
the dynamic linker maps into and each section of a segment
contains code or data of a particular type. Such information
includes symbol tables and string tables.

B. Fat Binaries and Universal Binaries

Multiple Mach-O files can be combined into a multi-
architecture binary. A binary file as such is also called a fat
binary due to the increased size of the file. Fat binaries
include machine code for multiple instruction set architectures
(ISAs) and thus can be run on multiple processor types. The
fat binary was developed by NeXT for their NeXTSTEP
operating system to allow Motorola 68k and Intel IA-32 based
processors to run the operating system without making
separate versions. After Apple purchased NeXT in 1996, fat
binaries continued to be supported in Mac OS X, but it wasn’t
until Apple announced their transition to Intel processors in
2005 that they really took off. Fat binaries are not actually
binary files themselves but rather an archive of binaries.

Every fat binary starts with a structure fat_header similar to
that of a single Mach-O file which contains two unsigned
integers magic and nfat_arch. The magic number is similar to
that in a Mach-O file since it also identifies the file as a fat
binary archive. However, for a fat binary the magic number
used is Oxcafebabe. The second unsigned integer is used to
define how many Mach-O binaries are contained within the
archive. In Mac OS X, fat binaries are used to support
optimized codes for multiple variants of an architecture such
as 32-bit and 64-bit PowerPC generations.

Later, Apple promoted the use of fat binaries through their
transition from PowerPC to Intel’s x86 architecture, giving fat
binaries the name “Universal Binary”. It is interesting to note
that PowerPC is a big endian (higher order bytes stored at
lowest address) architecture, and Intel uses little endian (lower
order stored in memory at the lowest address). However, the

fat_header structure is big endian on both architectures, thus
forcing a byte swap on Intel machines. The fat header
structure also contains information such as the archive offset
which allows the loader to take the native binary required for
certain types of architecture and run it as if it was a single
Mach-O. Because the native code is being run, it executes just
as fast as a pure native Mach-O file. The only drawback to this
is the universal binary’s size. As mentioned before, universal
binaries are simply archives of two Mach-O files which
generally are double in size of a single Mach-O. However,
this drawback doesn’t affect the end user significantly since
file storage sizes have grown an astounding amount.

III. INFECTING MAC OS X BINARIES

A. Concatenation Method

Apart from utilizing specific Mach-O binary features, a
simple way of infecting binaries is with the concatenation
method. This method works by concatenating two Mach-O
executable objects together. When the result is executed, only
the first binary will “run”. To use this as an exploit, a binary
needs to be created that knows its own size and contains a
potentially harmful payload within. We will call this binary
the ‘parasite’. To infect a host binary, it simply inserts itself in
the beginning of the host binary. In other words, it
concatenates the host binary with itself, the copies itself to the
location of the host binary, overwriting it. When the infected
host binary executes, the parasite must seek to the end of itself,
copy the rest of the binary, which is the host program, into a
temporary file and execute it as a child process. Then it
executes whatever payload desired either before, during, or
after the host binary is run.

Such a method is trivial to implement in Mac OS X because
most binaries are writable and it is possible for a process to
open a file descriptor to its own binary. Contrast this with
Linux where /proc/pid/mem must be used. The location of the
temporary file does not matter for all but some Objective-C
applications that use @executable_path where the temporary
binary must reside in the same folder as it was originally in.
The arguments and environment must be passed unmodified
when executing the temporary file in a fork so the application
has the illusion that its first argument (the location of the
binary), has not changed.

B. Resource Fork Method

Mac OS X file system uses HFS+, a replacement for
Apple’s Hierarchical File System(HFS). Each file on a HFS+
file partition has two forks, data and resource. To access a
file’s resource fork, the command <filename>/rsrc or
<filename>/..namedfork/rsrc is used. To use this for an
exploit, one can copy the host binary into the resource fork of
the parasite file. The parasite file is then copied over top of the
original host binary, replacing it. When the new binary is
executed, it simply executes the payload section before or after
executing its resource fork. This gives the illusion of the host
binary being run unmodified.

A limitation with this approach is that it only works with the
HFS file system. Since much data is received from CDs,
DVDs, the internet, and non-Mac OS X servers, this approach
could have difficulties spreading through certain mediums.
Luckily, the built in archive utility for creating /extracting ZIP
files in Mac OS X supports preserving resource forks, as well
as tar and other UNIX utilities when ran on a Macintosh
system. Similar constraints to arguments and environment
variables exist for this method as with the concatenation
method.

C. Hook Mach-O Entry or Exit Points

In the Mach-O binary, the entry point for the initial thread
can be found in a LC_ THREAD or LC_UNIXTHREAD load
command. The struct for this command contains an additional
struct (cpu_thread_state state) that stores the initial state of
each register. A free tool called HTE
4http:/hte.sourceforge.neth can be used to manipulate object
files and headers trivially, supporting code disassembly as
well. It can be used to view the srrO field in the Mach-O
header and modify it to the specified address of code
execution. Of course this can be automated to define the entry
point of parasite code or shellcode beginnings.

Since changed entry points can be easily detected by
antivirus software, other entry points can be used. For
example the DATA, mod init_func sections for C++
applications can be used as hooks, of which that have been
compiled with g++ can use _ TEXT, contructor and
_ TEXT, destructor sections, even if they don’t use them.
These can be used as entry or exit points and store malicious
code. These places make it difficult for antivirus software to
detect modified binaries since they look like valid code,
compared to an LC_THREAD construct pointing to a strange
memory address.

The approach used by the MachoMan virus uses
LC _UNIXTHREAD to modify the EIP register (on Intel), to
jump to segments which contain no sections (like
_ LINKEDIT and more importantly PAGEZERO). This
makes code loaded into PAGEZERO, which is usually not
accessible by the loader, to be run. It provides sufficient room
for malicious code and is invisible to the loader, making it
harder to detect binary execution flow alterations.

IV. FELCATOR VIRUS

A. Actions

The Felcator virus is a proof-of-concept virus for Mac OS X
created by the authors of this paper. It is slightly more than
proof-of-concept as it does have a malicious payload. Using
the concatenation method, it recursively infects all universal
binaries in the user’s Application directory (~/Applications)
when executed. The payload shows a pop up dialog that the
file is infected, along with printing that message to stdout. It
also captures the user’s bookmarks, website history, recently
downloaded files list, information about the operating system
and network configuration, as well as all the user’s keychains.

The keychains in Mac OS X store all passwords and possibly
other sensitive data such as credit card numbers. The keychain
is by default encrypted with the user’s login password. The
login password is not captured by the virus, but easily could be
through key logging or reading unencrypted swap files as the
root user. The captured information is then emailed to a
specific email address. The virus does this every time an
infected application is run.

B. Mechanism

The way the virus works is quite simple. The virus binary is
compiled as a universal binary and inserted in the beginning of
the desired binary to be infected manually. This is
accomplished with a Perl script that compiles the virus code
once to get the resulting binary size, then modifies the source
code with the updated file size, and compiles it again.
Compilation is done with the help of the make utility and the
result is a binary that knows its own file size. The Perl script
then copies the virus code to a temporary file, appends the
desired host binary to it, and then overwrites the host binary
with the temporary file. This process is known as virus code
bootstrapping. Once the virus infected a living binary, it can
then reproduce on its own.

When the infected binary is run, the virus code’s main
function is executed. The virus starts by seeking to the end of
itself and copying the rest of the binary, which is the
untouched host binary, to a temporary location. This location
was originally in /tmp, but later revisions of the virus chose to
use the same directory as the virus was in. The reason for this
is that many Cocoa applications load dynamic libraries that
expect them to be relative to the location pointed to by
@executable _path or in some cases for newer applications,
@loader_path. The linker resolves these paths at runtime, and
looks for dynamic libraries there. If the binary is moved away
from its application bundle (where frameworks, libraries, and
other resources are contained) the linker will not be able to
find the necessary libraries and the binary will fail to load. We
could not find a way to change @executable path at runtime,
so the “hack” we used was to use the binary directory for the
temporary location and keep the filename the same, but
append the PID (Process Identification) number to the
temporary file.

C. Infection

Once the temporary binary is written, the application
Jfork()’s, changes the permissions of the binary as necessary,
and runs it as a child process using the execve() system call.
As the host binary is running, the virus code proceeds to infect
other targets. Originally, the code would infect all global
applications (/Applications) and user applications
(~/Applications) about 95% of the time. The other 5% of the
time it is run, it will scan the whole file system for binaries to
infect, including /bin, /sbin, /usr/bin, /ust/sbin, etc, and any
network drives or other mounted file systems. For the sake of
easier testing and demonstration, the virus has been modified
to only infect the user applications (~/Applications), leaving

http://hte.sourceforge.net/

the rest intact. The demo version also attempts to infect a
binary named “test” in the current directory.

Finding binaries to infect is not a trivial task. Many Mach-
O binaries are non-executable shared or static libraries, and
some system libraries are not writable to by default for any
user. The reconnaissance phase must also be very robust,
because if the virus code crashes, the host application will go
down with it. Many system calls are used to find host binaries,
so stealth will always be a challenge.

For each specified directory, the virus uses the fts read()
system call to get a linked list tree of file paths in FTSENT
nodes. These nodes are then filtered for everything but regular
files. If the files have execute permissions by either the owner,
group, or world, the file is sent to the infection stage.

This stage tests if the file is large enough to be a universal
binary, and can be read in the first place. Only files that have
read and execute permissions will be infected by the virus. It
will try to set write permissions itself if it can, then restore the
permissions afterwards. The virus does not attempt to cover
its tracks by setting the modified date back to the original.

To determine if the virus is a universal binary, it tries to
read the fat header of the file and check the magic number
(Section [ILB}. If the virus is running on a little endian
machine, it will also need to byte swap the fat _header to read
it. If the magic number matches, and the number of
architectures is less than 20 (a hack for possible Java binary
conflicts), we agree that it is a universal binary.

We then use a little hack by seeking to byte 0x1000 where
the mach header of the first architecture is usually stored
(Section. This value was based on experimentation, but
sources suggest that it is static unless the fat archive contains
many Mach-O binaries that wouldn’t fit into the 0x1000
boundary At this offset, the mach_header is read and
checked for its magic value, MH MAGIC or MH CIGAM for
little endian machines. If these tests are successful, we make
sure the binary is an executable by checking the
mach_header filetype field for MH EXECUTE or
MH EXECUTE << 24 on little endian machines.

These checks are continued (e.g. make sure binary is not
already infected, etc) until the binary can be copied to a
temporary location in /tmp, overwritten with the contents of
the virus, and the original appended to the virus from the
temporary location. All this is done by using the file
descriptor of the running infected binary to read from itself.
Permissions can be a problem, which the virus tries to get
around by setting permissions manually, but if this fails, the
virus gives up infecting the target and moves onto the next
one. Using this method the virus infects all universal binary
applications, and once it has finished, it executes its payload.

D. Payload

The payload is up to the virus implementer. As discussed in
Section[A] the virus prints messages and collects user data and
emails it. Most of this is done with the system() call. This
invokes the command shell (/bin/sh) with the specified
commands to run, effectively enabling shell scripts to be

executed. This easily allowed us to make a dialog box with
AppleScript (osascript -e ‘tell application “Finder” to display
dialog “This application has been infected.””), and collect user
information with a combination of tar and mail commands.
The creativity of a virus writer, however, never ends, and more
interesting payloads could be invented to work with Felcator.
For example, Felcator could email itself to everyone on the
infected user’s address book.

E. Gaining Root Access with Roota

As mentioned earlier, the virus gives up infecting files that it
does not have permissions to write to. This might include
system directories like /bin and /sbin since by default these are
owned by root. Note that all applications in /Applications are
writable by any admin user on the system, which by default is
the first user of Mac OS X. Most people run their operating
systems as administrators simply due to the fact it is the
default. The safe defaults principle could very well apply
here. Any additional applications installed in /Applications
and ~/Applications are writable by the person that installed
them, making write permissions even more open.

However, if you are a non-admin user on a Mac OS X
system, it would be much easier for the virus to spread if it
could gain root access. Enter Roota, a local root exploit for
Mac OS X using a vulnerability in pppd that is installed by
default in Mac OS X. Details on how the exploit works will
not be covered in this paper to length constraints. However,
the basis of the exploit is that it creates a malicious pppd
plugin that starts a root shell, and loads the plugin in such a
way that gets around pppd’s check to make sure the stdin
descriptor is owned by root. The pppd binary is setuid, and
thus executes with root privileges.

Apple has since patched this flaw with a security update, but
it serves as a demonstration on how an up-to-date system a few
months ago could be vulnerable to such an attack. Using root
privileges Felcator could infect all binaries on the system.

F. Demonstration

Here is a demonstration with some output snipped:
$ make
gcc parasite.c -g3 -arch ppc -arch 1386 -o psite
gcc host.c -g3 -arch ppc -arch 1386 -o host
$ file host
host: Mach-O universal binary with 2 architectures
host (for arch ppc): Mach-0O executable ppc
host (for arch 1i386): Mach-O executable 1386
$./host
Hello, I am the host binary.
$ cp /bin/ls test
/bin/ls -> test
$ file test
test: Mach-O universal binary with 2 architectures
test (for arch i386): Mach-0 executable 1386
test (for arch ppc): Mach-O executable ppc
$./infector.pl host
[+] Infecting file: (host).

+
[+] Using file size: (0x120d8).
[+] File Successfully infected.
$./host
Infecting 'test'
Hello, I am the host binary.

Infected 'test'
file infected.

$./test
File 'test' already infected, skipping
file infected.
Makefile a.out host.c
parasite.c psite
host infector.pl payload.c test
$
G. Purpose

Felcator demonstrates that Mac OS X is vulnerable, as any
other modern operating system with privilege separation, is to
virus attacks. Not only are these virus attacks proof-of-
concept, but by showing that malicious acts can be malicious
we realize that they are a real threat. Gaining all the user’s
saved passwords and internet history simply by running a
malicious program unknowingly can cause a lot of damage.

Many users have been trained to click accept when Safari
prompts them if they are downloading an application. The
response will only be natural when a malicious program asks
to be downloaded. Even though user interaction is required to
spread the Felcator virus, it is not out of the ordinary to rely on
user interaction as it is how a lot of malware spreads on other
platforms, particularly Microsoft Windows XP.

V. DEFENSE STRATEGIES

The preceding sections showed how universal binaries in
Mac OS X can be compromised and exploited to malicious
ends. We will now investigate how to defend against such an
attack. There are two basic defense strategies we will consider:
prevention, and detection. We will deal with these two
categories separately. Please note that the recommendations in
this section are based on Mac OS X version 10.4 (Tiger).
Version 10.5 was released during our work on this project.

A. Prevention Using Stricter Access Control

Prevention means not letting the exploit occur in the first
place and this can be accomplished by utilizing the “least
privilege” principle of designing secure systems. Mac OS X is
based on the UNIX operating system and has the same access
control model. This model is a discretionary access control
model which uses access control lists where every file on the
system has read, write, and execute privileges assigned to it for
various users and groups.

Our exploit has the option of using the pppd vulnerability to
gain root access but if the target is not vulnerable, it tries to
infect binaries using whatever level of access the account in
which it is running has. If the account that it is running in has
write access to many binary files then the malware can infect
many applications.

In Mac OS X there are three types of accounts: standard,
administrator, and root. A standard account can only affect the
files in his/her home folder. An administrator account has
more access than a standard account and can not only affect
the home folder, but also the Applications folder where
applications are installed and the Library folder which contains
application and OS related support files. The root account can
only be accessed from an admin account and has ultimate
powers in the system. This includes the ability to affect the

System folder which contains the essential components of OS
X. The root account is disabled by default and can be activated
by an administrator.

A possibly dangerous property in Mac OS X is the fact that
when the system is first initialized, the first account is created
as a member of the admin group which has write access to
many binaries files on the system. If a user in the admin group
executed our malware by accident it could infect a large
number of files because of the default permissions. A way to
solve this problem is to adjust the OS to require the user to
create two accounts upon loading the OS for the first time, one
administrator account and one standard account. All
application installation and system modification could be done
in the admin account and everything else could be done in the
normal account which would not have permission to write to
any binary files. Using this method would be utilizing the
“least privilege” design principle. Another important principle
to consider when making this change is “psychological
acceptability” because the reason why two accounts are
required should be clearly explained to the user.

B. Sandboxing

Another prevention method is a technique called
sandboxing. Sandboxing provides a tightly-controlled set of
resources for programs to run in, such as scratch space on disk
and memory. By setting a default sandbox for unknown
programs, we could make sure that unknown programs could
write only to a specified area of the disk and could not write
outside of that. This way, there is no chance that our exploit
could write to a binary file even if the current user has write
access to it. Another way sandboxing could be useful is to
sandbox known programs so if they do get compromised by
our exploit, the resources the exploit can access will be limited
to the host program’s sandbox. Sandboxing is based on the
“least privilege” principle of designing secure systems. It also
utilizes the principle of “defense in depth” because it is an
extra layer of access control on top of the user privilege access
control.

VI. DETECTION METHODS

If the prevention methods fail and a binary file does get
infected with our exploit, then it should be detected and
removed. The tricky part of this is detection because once it is
detected then it should be fairly easy to remove. Our exploit
could be detected using signature detection, change detection,
activity scanning or by making mach-o files more secure by
redesigning the header. All virus detection methods attempt to
ensure the integrity of software because they are designed to
detect code that should not be there. They also indirectly
attempt to ensure confidentiality and availability by detecting
malicious software that might harm the confidentiality or
availability of data. For example, if a virus is designed to
perform a denial of service attack then a virus scanner would
be ensuring data availability by detecting and removing the
virus. Similarly, if a virus was designed to steal credit card
numbers and email them to some email address then a virus

scanner that detected it would be ensuring the confidentiality
of the data.

A. Signature Detection

One possible way to detect if a binary has been infected
with our exploit is called signature detection. In this case, the
signature will be a string of bits found in the malicious portion
of binary that was changed. All of the binaries on the system
could then be scanned looking for the signature. The signature
string would have to be of sufficient size as to minimize false
positive matches. Two advantages of this method are that it is
simple to implement and it provides specific identification of
viruses. A disadvantage is that information about the exploit
must be known in order to create a signature to scan for.
Another disadvantage is that if a signature was created for the
exploit, the exploit’s creators could make subtle changes in the
exploit’s code such as redundant or useless code that wouldn’t
change its functionality but would change its signature. In this
way, the malware creator could compile many versions of the
exploit all with different signatures and a signature scanner
would have to have a different signature for each different
version. For example, Trudy could have the source code for a
working virus but a signature has already been created to
detect the virus. She could then go back to the source code,
create a variable called ‘x’, and then every fourth line insert
the line of code “x = 1”. If the variable ‘x’ was not used in the
previous version of the virus then this change would not affect
the functionality of the virus but it would affect the compiled
machine code for the virus and would very likely change its
signature. She could then go back and change the additional
lines to “x = 2” and compile a third unique version. This way
she could create any number of unique viruses that all have the
same functionality but different signatures.

B. Change Detection

Another way to detect our exploit is to use change detection.
Change detection can be accomplished by computing a hash of
every binary file on the system. Then, at regular intervals, the
hashes are recomputed and compared to their original values.
The main advantage of this method is that there are virtually
no false negatives so if a file has been infected it will definitely
be detected. This method also has several disadvantages. First,
the original hash file must be computed before the infection
occurs. If the binary is infected before a hash of the uninfected
file is computed, then change detection will reveal nothing.
Another disadvantage comes from the fact that binary files on
a system do change for legitimate reasons like when they are
updated. For this reason, a change detection scan would likely
come up with numerous false positives which would place a
heavy burden on the user to sort through them. It is also
conceivable that a binary file could be infected shortly after it
was updated for legitimate reasons and the infection would not
be detected.

C. Activity and Heuristic Scanner

An activity based virus scanner monitors the activity of

programs and reports any suspicious behavior. It may, for
example, detect any calls to format the disk that were not made
by the OS. It may also detect a program tying to modify or
change binary files because this type of behavior is unusual.
Programs other than installers usually only modify data files
and not executables. An activity based scanner would be
effective against our exploit because it is an application that
tries to modify binary files and once it infects a binary file, it
uses the host program to infect other binary files. For example,
if our exploit infected a word processor, then it would use it to
infect other binaries. An activity based scanner would monitor
the activity of the word processor and alert the user if the word
processor tried to write to an executable file. A similar type of
scanner to an activity based scanner is a heuristic scanner.
Instead of monitoring activity it looks for suspicious sections
of code that are generally found in viral programs. For
example, a heuristic scanner might scan for code in a program
that looks for other program files. A big advantage of activity
based and heuristic scanners is that they can scan for unknown
viruses. The scanner does not need to know the exact nature of
a virus because it will detect it as long as it does some kind of
general suspicious thing that the scanner is programmed to
catch. A big disadvantage is that it is difficult to define bad
behavior that a virus does but a legitimate program never does.
Nevertheless, activity and heuristic scanners still remain useful
tools.

D. Improve the Mach-O Format

A third way to detect our exploit would be to modify the
design of the Mach-O file header to include the program
length. This would be specified as an offset value. Since our
exploit concatenates itself to the end of existing binaries, it
modifies the length of the binary. If the length had been
specified in the header, then the OS could generate a warning
if the system executed code at an address that the OS thought
was the exit point of the program but the program did not exit.
Of course the malware could simply write over information in
the header file and change the exit point so the header would
have to be signed and checked whenever the program is run.
This detection method would be effective but difficult to
implement since it involves changing the format of Mach-O
files.

VIL

Apple’s Mac OS X operating system is just as vulnerable to
virus attacks as other operating systems. The fact that it has
not been a major target for attackers could change as Mac OS
X is becoming more popular. And the fact that there are not as
many viruses for Mac OS X as there are for other platforms
does not reduce the severity of the threats that could be
realized. It is therefore advised for Mac users to watch what
they’re downloading and running. Having antivirus software
with change detection and heuristic activity scanning would
help reduce the risk, as well as running sandboxed and signed
applications. Hopefully we will see improvements to Mach-O
in the future that will make it harder to infect applications.

CONCLUSION

REFERENCES

1 Apple (2007, October) Mac OS X Security [Online]. Available:

|http://www.apple.com.sg/macosx/features/security]

[2] J. Jones. (2007, June 18) Days of Risk in 2006: Client OS Products
[Online]. Available:|http://blogs.csoonline.com/node/365]

[3]1 J.Jones. (2007, June 13) Days of risk in 2006: Linux, Mac OS X,

Solaris and Windows [Online]. Available:
|http://blogs.csoonline.com/days of risk in 2006]

[4] M. Muthanna. (2006, March 26) How OS X Executes Applications
[Online]. Availablef{http://0xfe.blogspot.com/2006/03/how-0s-x- |

| executes-applications.html|

[51 R.GBiv. (2006, October) Infecting Mach-O Files [Online]. Available:

|http://vx.netlux.org/lib/vrg01.html|

[6] N. Archibald. (2004, November 18) Infecting the Mach-O Object
Format [Online]. Available:|http://felinemenace.org/~nemo/slides/mach-|

[7]1 Jon. (2006, June 9) Mach-O and Universal Binaries [Online]. Available:

|http://hohle.net/scrap post.php?post=197|

[8] iDefense Labs. (2007, May 24) Public Advisory [Online]. Available:

|http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=537]

[91] Wikipedia (2007, October 25) Universal Binary [Online]. Available:

|http://en.wikipedia.org/wiki/Universal binary]

[10] Wikipedia (2007, October 24) Fat Binary [Online]. Available:

|http://en.wikipedia.org/wiki/Fat binary#Mach-O and Mac OS X]

[11] J. Hohle (2006, June 9) Mach-o and Universal Binaries [Online].
Available;|http://hohle.net/scrap_post.php?post=197]

[12] N. Dhanjani. (2004, June 27) New (local) Mac OS X vulnerability:
Passwords in Swap files [Online]. Available:
http://www.oreillynet.com/onlamp/blog/2004/06/new _local mac o0s x |
vulnerabili.html|

[13] Wikipedia (2007, October 14) Mach-O [Online]. Available:

|http://en.wikipedia.org/wiki/Mach-O|

[14] A. Adams of Symantec. (2006, November 13) DeepSight Threat

Management System: Research Report [Online]. Available:

http://downloads.securityfocus.com/downloads/MacOSX DeepSight R |

eport.pdf]

—

[

http://downloads.securityfocus.com/downloads/MacOSX_DeepSight_Report.pdf
http://www.apple.com.sg/macosx/features/security
http://blogs.csoonline.com/node/365
http://blogs.csoonline.com/days_of_risk_in_2006
http://0xfe.blogspot.com/2006/03/how-os-x-executes-applications.html
http://0xfe.blogspot.com/2006/03/how-os-x-executes-applications.html
http://vx.netlux.org/lib/vrg01.html
http://felinemenace.org/~nemo/slides/mach-o_infection.ppt
http://felinemenace.org/~nemo/slides/mach-o_infection.ppt
http://hohle.net/scrap_post.php?post=197
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=537
http://en.wikipedia.org/wiki/Universal_binary
http://en.wikipedia.org/wiki/Fat_binary#Mach-O_and_Mac_OS_X
http://hohle.net/scrap_post.php?post=197
http://www.oreillynet.com/onlamp/blog/2004/06/new_local_mac_os_x_vulnerabili.html
http://www.oreillynet.com/onlamp/blog/2004/06/new_local_mac_os_x_vulnerabili.html
http://en.wikipedia.org/wiki/Mach-O
http://downloads.securityfocus.com/downloads/MacOSX_DeepSight_Report.pdf

	INTRODUCTION
	Binary Formats
	Mach-O Format
	Fat Binaries and Universal Binaries

	Infecting Mac OS X Binaries
	Concatenation Method
	Resource Fork Method
	Hook Mach-O Entry or Exit Points

	Felcator Virus
	Actions
	Mechanism
	Infection
	Payload
	Gaining Root Access with Roota
	Demonstration
	Purpose

	DEFENSE STRATEGIES
	Prevention Using Stricter Access Control
	Sandboxing

	DETECTION METHODS
	Signature Detection
	Change Detection
	Activity and Heuristic Scanner
	Improve the Mach-O Format

	Conclusion
	References

