
1

Security Analysis of UBC Web Applications
(November 2007)

Jeffrey Qian, Je-Yu George Lee, William Ha and Phoebe Hsu, University of British Columbia

 Abstract - UBC Web applications and online services are
used by thousands of students and faculty members on a
daily basis. How secure are these applications? In this
report, we have analyzed security threat levels from sixteen
UBC websites, and classified the threads found. A few
vulnerabilities discovered are demonstrated for illustration
purposes only and no real damage has been done to the web
server and applications. However, these vulnerabilities that
are found could facilitate other attackers to perform further
actions and eventually compromise the system.
Countermeasures and recommendations are provided in
this report and will be forwarded to appropriate
departments in UBC.

 Index Terms - Web Application Security, Structure Query
Language, SQL, Relational Database Management System,
RDBMS, Cross Site Scripting, XSS, SQL Injection,
Directory Traversal

I. INTRODUCTION

Security of modern interactive web applications has been a
serious issue since the employment of database services. The
Structure Query Language (SQL) is the programming language
for the retrieval and management of data in Relational Database
Management System (RDBMS). SQL has been commonly used
by web administrators to select, insert, update, and find out the
location of data, but has also made the website vulnerable to
malicious attack, such as SQL Injection. Moreover, any web
applications with or without databases might still be vulnerable
to attacks. For example, in Cross Site Scripting (XSS), an
attacker uses a web application to send malicious code,
generally in the form of a browser side script, to a different end
user without validating or encoding the input. Statistics show
70% of websites are at immediate risk of being hacked. [1] Our
project goal is to perform an evaluation on the vulnerability of
UBC’s web applications to different kinds of malicious attack.

Manuscript received November 19, 2007.
J. Qian (e-mail: jeffreycq@gmail.com).
J. Lee (e-mail: georgelee4@hotmail.com).
W. Ha (e-mail: haluvaly@msn.com).
P. Hsu (e-mail: phoebehsu@hotmail.com).

II. ATTACKING METHODS

A. SQL Injection
Being one of the many web attack mechanisms for

application layer attack, SQL Injection is commonly used by
hackers to steal and modify data from organizations. By taking
advantage of improper parsing of inputs of the web forms,
hackers could do the following steps: pass SQL commands
through a web application to be executed by the backend
database, query database directly, and gain access of the data
held within the database. Dynamic script languages, such as
ASP, ASP.NET, PHP, JSP and CGI, are vulnerable to this
attack.

B. Cross Site Scripting (XSS)
 Being another of the many web attack mechanisms for
application layer attack, XSS allows attacker to embed
malicious content, such as JavaScript, VBScript, ActiveX,
HTML or Flash, into a vulnerable dynamic page to fool the user
and gather victim’s data. XSS may occur anywhere a web
application uses input from a user in the output it generates
without validating it. The consequences of such attack may be
as trivial as image or layout change, or as severe as disclosure
of user’s session cookies [2].

C: Directory Traversal

Directory Traversal is an HTTP exploit which allows
attackers to access or execute commands in restricted directories
that are outside of the web server’s root directory [3]. It is also
known as directory climbing and backtracking. With a web
browser, hackers can blindly find any default files and
directories on the system if the system is vulnerable to Directory
Traversal.

III. PROCEDURE

A. Scan for Vulnerabilities:
 1) Find target websites

First of all, the attacker needs to find a website to attack. In
order to get desirable results, an attack towards a website that
has a database or a server is more reasonable. Also, attacking a
university institution website is more challenging then attacking
a random website on the network. Therefore, as we have
mentioned in the proposal, we will use UBC websites with
either a database or a server as our major target.

2

2) Scan with a web application vulnerability scanner
Many different web vulnerability scanners are available on

the websites. Three different scanners, X-Scan, Wikto, HP
WebInspect, have been tested, but Acunetix Web Vulnerability
Scanner, was finally chosen to scan though UBC websites based
on the following reasoning: 1) They generate report which
contain the details of the scanning result 2) they scan more then
just one type of vulnerabilities. An example of some
vulnerabilities that are found by Acunetix is showed in Fig 1.

FIG. 1 Vulnerabilities found using Acunetix

.
B. Attack Based on Vulnerabilities Found:

1) SQL injection
An SQL injection attack was conducted to one of the

websites found vulnerable. To request all staff information from
the database, the following URL has been inputted:
http://xxx.xx.xxx.xxx/directory/directorylisting/activity.cfm?Ac
tID=11111 or 1=1
Note: Exact hyperlink locations and graphics shown in the
demonstrations throughout this report have been modified
accordingly in order to give UBC IT sufficient amount of time to
fix these issues before other attackers perform similar attacks.
When that URL is sent, the corresponding SQL query is
executed:

Since 1 =1 is always a true statement, the database will return
every single entry in the directory table that has ActID as its
attribute.

2) Cross-Site Scripting (XSS)

In the demonstration, the XSS attack was conducted to
another website found vulnerable. The attack will modify the
page layout by adding a URL link into the webpage. For
example, to input a prank URL into E-learning website by using
XSS, the attacker edits the URL in the following way:

https://www.xxxxx.ubc.ca/home/index.cfm?p=%22%3E%
3Ca%20href=%22https://www.ece.ubc.ca%22%20%3ELo
gin%3C/a%3E%3Cfont%20color=%22white%22%3E

or in a more understandable format:

https://www.xxxxx.ubc.ca/home/index.cfm?p=">Login<font
color="white">

If the user uses the above URL to visit the e-learning
website, instead of visiting the e-learning homepage the user
will be redirected to a page that has a login link. However, the
login link will actually redirect the user to the EECE website
instead of the login page, which is shown in Fig. 2.

FIG. 2 Sample result using XSS on e-learning website

The reason behind this is that in the prank URL we added

html code at the end of the original URL. By using the web
vulnerability scanner, we know that the Get value ‘p’ can be set
in the URL. Also, by checking the HTTP response using open
source web application, we know what the p value will do in the
html code [4].

Select *
from directory
where ActID = 1111 or 1 =1

For example, if we
type https://www.xxxxx.ubc.ca/home/index.cfm?p=abc for the
URL, in the HTTP response we will get the following html code:

<p>

 Please click the link.</p>
 <a href="https://www.xxxxx.ubc.ca/home/
 DirCMSSiteContent/abc"target=" blank">abc

https://www.ece.ubc.ca/
http://xxx.xx.xxx.xxx/directory/directorylisting/activity.cfm?ActID=11111%20or%201=1
http://xxx.xx.xxx.xxx/directory/directorylisting/activity.cfm?ActID=11111%20or%201=1
https://www.xxxxx.ubc.ca/home/index.cfm?p=abc
https://www.elearning.ubc.ca/home/index.cfm?p=%E2%80%9D%3E%3Ca

3

However, since it is not possible to add or edit the existing
resources in the website, simply setting the p value will be
useless because it is simply trying to access the resource
specified by the p value in CMS site content. Therefore we need
use the following steps to perform the attack:

a) By setting the p value to ”> at the end of the original URL

the attacker can end the current attribute setting:

Input in web browser:

Output in HTTP Response:

b) Since the attacker ended the first href attribute, the link will

try to access the resource under the directory
/home/DirCMSSiteContent. Although the resource is
unavailable, the attacker can add more html code. For
example the attacker can make a new href attribute by
entering
, which will redirect
users to the EECE website [5]:

Input in web browser:

Output in HTTP Response:

c) Right now the attacker has a link that will redirect users to

other websites. However, because of the extra text it is
obvious which website the link will redirect to (see Fig. 3).

FIG.3 Redirect other user’s sample

Therefore for the attacker’s purpose of deceiving users we
will add more codes to hide the extra text. We will first add
a “Login” text to deceive user to think that the link will
redirect user to the login page. Second we will add some
html code to set the font color of the extra text to the same
color as the background color [6]:

Input in web browser:

Output in HTTP Response:

And we can see the result in Fig 2.

https://www.xxxxx.ubc.ca/home/index.cfm?p=">Login<font
color="white">" https://www.xxxxx.ubc.ca/home/index.cfm?p=">

<a href="https://www.xxxxx.ubc.ca/home/
DirCMSSiteContent/">" target="_blank">"> <a

href="https://www.xxxxx.ubc.ca/home/DirCMSSiteCo
ntent/">Login<font
color="white">" target="_blank">a><font
color="white">

If a user clicks that link, that user will be redirected
to www.ece.ubc.ca. In this case, there will be no harm done.
However, the destination webpage can be harmful for the user.
For example, the attacker can create a similar webpage to the
original homepage. The user may be tricked and enter their
user/password to the fake page, therefore, the attacker can
retrieve the password from the user.

<https://www.xxxxx.ubc.ca/home/index.cfm?p=">

 3) Directory Traversal
Directory traversal is an attacking method used by attackers

to access restricted Web server files residing outside of the Web
server's root directory. In Fig 4, the /etc/passwd file on the
UNIX server running one of the UBC websites’ application is
easily exposed to the attacker by running the following
command in a web browser URL field:

<a href="https://www.xxxxx.ubc.ca/home/
DirCMSSiteContent/"><a href=

"https://www.ece.ubc.ca" >"target="_blank">
www.ece.ubc.ca">

https://www.xxxxx.ubc.ca:443/home/index.cfm?menuClic
ked=1%252F&p=../../../../../../../../etc/passwd%00.html

where "../" are common Unix-like directory traversal characters.

After obtaining the password file containing a list of users,
attacker may choose to use tools such as THC Hydra[7], a fast
network authentication cracker which performs rapid dictionary
or brute force attacks against more than 30 protocols, to start
hacking user login accounts. Meanwhile, by manipulating the
directory level on the WebCT UNIX file system, other files can
also be retrieved is read access is granted on the file, which
greatly facilitate the attacker to obtain more information about
the system and eventually lead to a fully compromised system.

https://www.ece.ubc.ca/
https://www.ece.ubc.ca/
http://www.ece.ubc.ca/
https://www.elearning.ubc.ca/home/index.cfm?p
https://www.ece.ubc.ca/
https://www.xxxxx.ubc.ca/home/index.cfm?p

4

FIG. 4 Result using Directory Traversal Attack

C. Provide Counter Measure

1) SQL injection
a) Remove Culprit Character

Web developer should only allow valid character/word
to be inputted. Therefore, character or word such as: --,
select, =, which can be use to perform SQL should be
removed before it enter to the database.

b) Limit User input’s length
The side of the input length should be limit to prevent
attacker entering a SQL query message in the dialogue
box.

c) Server side Validation
Much current web developing language such as
JavaScript can allow web developer to have 1) and 2)
countermeasure. However, the attacker can modify the
JavaScript code in the webpage and therefore be able to
input query message. Therefore, the server side should
also validate input.

d) Modify Error Message
Web developer should not allow outside users to see
error message/report that is generated by the database
[8]. In the example of one of the UBC websites, the
webpage return an error message (“OraOLEDB error
'80040e57' ORA-01401: inserted value too large for
column”) on the website which let the attacker know
that their message has passed to the database. Therefore,
they know which variable can be use for attacking the
database.

 2) Cross-Site Script
 Encode user’s Output

 Cross-Site Script is based on user sending a malicious
code in the script. Therefore, if the content script is
encoded, when the content reach to the server, it will not in
its executable format. Thus, prevent XSS from happening

 3) Directory traversal attacks
a) Ensure the latest version of web server software has

been installed, and all hot fixes have been applied.
b) Validate user input by removing meta characters such

as (../) from the user input. Ensure only what should be
entered in the field will be submitted to the server.

c) Use access control list to limit users’ access to specific
directories in the web server’s file system.

Administrator can determine whether a file or folder
can be viewed or executed by users, as well as other
access rights.

IV. EVALUATION

 A. Statistics
According to scanning results (see Table 1), most of the

target websites have high threat level. In addition,
approximately 16% of UBC websites we tested are vulnerable
to SQL injection, 35% are vulnerable to Cross Site Script, and
only 5% are vulnerable to Directory Traversal. The total
numbers of vulnerability for each website classified as High by
the scanner are also shown in Table 1.

NOTE: Due to security reasons, the names of the websites
are not shown.

Website Scanned High Vulnerably Found

UBC Websites SQL
Injection XSS Directory

Traversal
Total
No.

01 No No No 4
02 No No No 0
03 No Yes No 14
04 No No No 0
05 Yes Yes Yes 35
06 No Yes No 11
07 No No No 2
08 Yes Yes No 270
09 Yes Yes No 217
10 No No No 200
11 No No No 2
12 No Yes No 64
13 No No No 0
14 No Yes No 16
15 Yes No No 21
16 Yes Yes No 361

TABLE.1 Scanning Results

B. Analysis of website scan results
Vulnerability is classified as High when the following
criteria apply [9]:

a) Nearly all users of the web application are affected.
b) The vulnerability applies to a standard configuration of

the web application.
c) The impact of the vulnerability leads to root or system

level privileges or other sever damages to the web
application.

 Based on these criteria, the following vulnerabilities were
found and classified as High among the sixteen UBC websites
being scanned.

! Blind SQL/XPath injection for numeric/string
inputs (double quotes)

! CRLF injection/HTTP response splitting
! Cross Site Scripting

5

! Directory traversal (Unix)
! PHP multiple vulnerabilities (Version older than

4.4.1; Entity Encoder Heap Overflow)
! Script source code disclosure
! SQL injection
! Unfiltered Header Injection in Apache

1.3.34/2.0.57/2.2.1
! Zend_Hash_Del_Key_Or_Index Vulnerability

The number of high vulnerabilities for each website were
counted and shown in the last column in Table 1. Generally
speaking, the higher the vulnerability number, the more likely
the website will be compromised within a given effort of
attacking. Among these websites, UBC bookstore, EECE, and
IT services seem to be the most secure. Student Service Centre
and Engineering Society websites come in second place in
terms of security. The least secure web websites, which are not
considered as mission-critical applications, range from Dr.
Konstantin Beznosov’s website (containing the iBib web
application), to the UBC library website, and to the UBC REC
website.

C. Information Security Principles

Three key concepts form the core principles of information

security: confidentiality, integrity and availability, have been
compromised in this security analysis of web applications[10].

Confidentiality is the assurance of data privacy. However,

in the Directory Traversal example, this principle has been
violated since the attacker can easily obtain and read
unauthorized files such as /etc/passwd file on the UNIX server
via a standard web browser.

Integrity is the assurance of non-alteration of data. Source

integrity is compromised when an attacker spoofs its identity
and supplies incorrect information to a recipient. In the example,
of cross site script, the attacker can retrieve login information
from the users therefore, violate the source integrity

Availability is the assurance for authorized users to the

timely and reliable data access services. If attackers receive the
user login information from users, they can change the
password and not allow the correct user to login to e-Learning.

V. CONCLUSION AND FUTURE WORK

FIG. 5 Number of Vulnerabilities discoverd

 As shown from the following Fig. 4, the number of
vulnerabilities discovered for each website varies. Websites are
found to be relatively more secure when one or two of the
following conditions applies:

a) Website provides mission-critical online services. For

example, the Student Service Centre website has been well
developed and deployed since it is a central location where
all UBC student information such as transcripts, tuition fee,
and registration are maintained. The website must
guarantee all data confidentiality, integrity and availability
at the highest priority.

b) Websites developed by departments or personals who have
broad knowledge in computer security related issues. The
EECE, and IT Services websites are excellent examples.

 A copy of this report will be forwarded to UBC IT
Department and hopefully the vulnerabilities which have been
discovered will be addressed by UBC web developers and
system administrators in the near future. As the complexity of
web applications increases and the attacking methods evolve
overtime, defending techniques should also be improved
constantly in order to provide worry-free services to system
users.

6

REFERENCES
[1] Acunetix, "70% of websites at immediate risk of being
hacked!", February 12, 2007,
http://www.acunetix.com/news/security-audit-results.htm

[2] Cgisecurity, "The Cross Site Scripting (XSS) FAQ", August,
2003, http://www.cgisecurity.com/articles/xss-faq.shtml

[3] Imperva Inc, "Directory Traversal",
http://www.imperva.com/application_defense_center/glossary/d
irectory_traversal.html, Accessed on November 12, 2007

[4] WebSniffer.net, "View HTTP Request and Response
Header", http://web-sniffer.net/, Access on November 12, 2007

[5] Web-Source.net, "HTML Tags / Codes / Web Page Design",
http://www.web-source.net/html_codes_chart.htm, Access on
November 10, 2007

[6] ComputerHope.com, "HTML color codes and names",
http://www.computerhope.com/htmcolor.htm, Access on
November 16, 2007

[7] The Hacker’s Choice, "THC-Hydra", May 5, 2006,
http://freeworld.thc.org/thc-hydra/

[8] P. Sharma, CERT-In, Indian Computer Emergency
Response Team,Department of Information Technology,
Ministry of Communications and Information Technology,
Govt. of India, "SQL Injection Techniques & Countermeasures",
July 22, 2005.
http://www.cert.org.in/knowledgebase/whitepapers/ciwp-2005-
06.pdf

[9] SecurityWarnings, "High-Level Threat", June 16, 2002,
http://www.securitywarnings.com/encyclopedia/?id=26

[10] Wikepedia, "Information Security", November 13, 2007,
http://en.wikipedia.org/wiki/Information_security

