
EECE412 Fall 2008 Final Report – Group 07

1

Abstract—This report studies the cross-site scripting (XSS)

vulnerabilities in a very popular social networking site,
Reunion.com. Introductions to cross-site scripting and
Reunion.com are provided, as well as the vulnerabilities found in
the website and the methods used to discover and exploit these
vulnerabilities. The report concludes with some possible solutions
to the vulnerabilities found.

I. INTRODUCTION

INCE their introduction, social networking sites have
attracted millions of users looking to express their

individuality online. Over the last few years, this class of
websites has diversified in the type of information they allow
users to express [7]. Despite the growing popularity of social
network sites, little research has been made on the security
vulnerabilities of allowing users to upload and share
information over the web. The purpose of this report is to
analyze the cross-site scripting vulnerabilities of one particular
social-networking website, Reunion.com.
 Reunion.com is currently ranked as one of the top 10 North
American social networking websites, and has over 40 million
members worldwide. The website allows its members to share
their personal information, such as their names, hobbies,
interests, address. Reunion.com also allows members to create
and share photo albums with other members.
 Cross-site scripting, or XSS, is a very important type of
security vulnerability that allows code injection by malicious
web users into the web pages viewed by other uses. XSS
attacks are written in a markup language such as HTML,
combined with a client-side scripting language such as
Javascript [3, pp. 130-150].
 Reunion.com was found to have many XSS vulnerabilities
that allow potential attackers to perform very damaging
actions. The next sections describe the specific vulnerabilities
found in Reunion.com, the methods taken to discover and
exploit these vulnerabilities, and potential solutions to
eliminate and reduce the impact of these vulnerabilities.

II. REUNION.COM VULNERABILITIES AND DESIGN FLAWS

Three major vulnerabilities were found in Reunion.com
through the course of this analysis: XSS vulnerabilities, cross-
site request forgery vulnerabilities, and authentication
vulnerabilities.

A. XSS Vulnerabilities

In the Photos page of Reunion.com, users can add albums
and set their names and descriptions. The critical security risk
that let us accomplish our attack was that Reunion.com allows
script tags as input for the album name and album description.

This vulnerability is the result of violating the Complete
Mediation principle of designing secure systems. This
principle requires that every access to every object in a system
must be checked for authority. Filter should have been
employed by Reunion.com on all input forms, including the
Album description input to ensure that no malicious inputs
were entered.

B. Cross-Site Request Forgery Vulnerabilities

Cross-site request forgery, or CSRF, is a type of attack
similar to XSS, except that it allows attackers to make requests
to other websites on behalf of the victim.

Once a script is inserted into the Photos page, any user that
views this page will run the script in their browser. This gives
the script significant control over the victim’s browser, and can
be used to navigate the victim to other pages, and steal cookies
from the victim’s browser. For example, the script could cause
the victim’s browser to navigate to the victim’s email site and
steal the victim’s contact list or emails. This attack is CSRF
because it exploits the trust that the email site has that the
requests are coming from the user and not a script.

This vulnerability is a result of violating the Questioning
Assumptions principle of designing secure systems.
Reunion.com assumes that all requests made to and from its
website are by trustworthy members. Instead, the website
should check for suspicious requests that might indicate they
are coming from a script.

C. Authentication Vulnerabilities

Reunion.com allows users to change their passwords or
delete their accounts. However, the website does not require
any more authentication to perform these actions. For example,
the user is not required to enter their old password when
changing their password or deleting their account. Combined
with Reunion.com’s XSS and CSRF vulnerabilities, an
attacker could very easily change a victim’s password or delete
a victim’s account.

The Defense in Depth principle of designing secure systems
was violated in this case. This principle requires a system to
layer its defenses. Having a user re-authenticate himself when
performing important actions will reduce the likelihood that
the action is being made by a malicious attacker.

Security Analysis of Cross-Site Scripting
Vulnerabilities in Reunion.com (Dec 2008)

Samir Gupta, Edwin Jaury, Onn Tai Yong, and Yan Chiu, EECE412 Group 7

S

EECE412 Fall 2008 Final Report – Group 07

2

The next section describes the XSS and authentication
vulnerabilities in detail, how they were discovered, and how
they were exploited.

III. METHODS OF ATTACK

A. Finding the XSS Vulnerabilities in Reunion.com

The first step to attacking Reunion.com was finding XSS
vulnerabilities in the site. This required inserting a basic alert
script into every input field of Reunion.com until the script
was actually executed and an alert box opened up in our
browser. An example is shown in figure 1 where the script is
inserted into our Profile information.

We found that the scripts inserted into our profile

information were not recognized as HTML scripts because
they were converted to UML-Encoded ASCII characters when
stored on the Reunion.com server. We attempted to insert
scripts in every page of Reunion.com - include Blogs,
Comments, Announcements, and Profiles – and discovered the
same problem. We finally found that scripts inserted into the
Photos page of our profile were successfully executed.

Reunion.com allows members to create albums and create
an album description in the “Photos” section of their profile.
Both the Album Name and the Album Description fields allow
the user to inject a script. The Album Name field has a length
constraint of 10 characters, which is too short to inject a script.
For this reason our scripts were inserted into the Album
Description field, which has a longer length constraint of 90
characters. Figure 2 shows the script being inserted and
executed in the Album Description field of the Photos page.

Once we found this injection point, the next step was to host
a script on an FTP server.

B. Hosting an XSS Script on a Server

The scripts were stored on the UBC EECE FTP servers
provided to us. Figure 3 shows the location of the script on
one of our EECE accounts.

The script inserted into the Album Description field was then

changed to point to the location of myscript.js on the EECE
server. The new script is shown in figure 4.

Once the script was successfully hosted on our FTP server,

the next step was to modify the script to actually perform an
attack.

C. Crafting the Reunion.com Attacks

We were able to successfully create and execute six attacks:
editing the victim’s profile, changing the victim’s login
password, inviting a friend on behalf of the victim, creating a
photo album in the victim’s profile, and deleting the victim’s
Reunion.com account.

In all attacks, an iframe is first created that navigates to the
desired page. For example, to create an iframe and direct it to
the victim’s Edit Profile page the following javascript is used:

Fig. 3. Hosting a JavaScript file on our UBC EECE server.

Fig. 2. Inserting a basic alert script into album description field and being
successfully executed

Fig. 1. Inserting a basic alert script into all the input fields of the Edit
Profile page of Reunion.com.

Fig. 4. Creating a script in the Album description field to point to the
JavaScript file stored on the FTP Server.

EECE412 Fall 2008 Final Report – Group 07

3

Once the iframe is created, the script has full access to all of
the directed page’s elements, including its input fields and
buttons. The next sections provide detailed descriptions of
each attack.

1) Editing the Victim’s Profile
First, an iframe is created and directed to the Edit Profile

page, reunion.com/showEditProfile.do. To change the victim’s
First Name, the text field containing the first name is retrieved
and changed.

To submit the new First Name, the script can “click” the

Save button at the end of the Edit Profile page using the
javascript click() method.

Once the button is clicked by the script, the victim’s web

browser will send the victim’s changed profile information to
the Reunion.com server. The next time the victim views their
Profile, they will see their first name changed to “Stinky”.

An attacker could potentially use this attack to modify or
retrieve any of the victim’s personal information – including
hobbies, interests, home address, phone number, and email -
by simply changing the name of the variable retrieved from the
iframe. This exploit shows that the integrity property of
information security has been compromised.

2) Changing the Victim’s Login Password
This attack is very similar to editing the victim’s profile

information, with the exception that the iframe is directed to
the Change Password page, reunion.com/showLoginInfo.do.

Reunion.com does not require a user to re-enter their old
password when changing a password. For this reason, the
script can retrieve the password field and set its value to
another password and click the submit button using the same
method as editing the victim’s profile.

The following code shows how to change the victim’s
password to “attackerspassword”:

An attacker could potentially use this attack for identity

theft by changing a victim’s password to one that the attacker
knows. The attacker would then be able to log in as the victim
and completely take-over the victim’s profile. This means that
the victim’s confidentiality has been breached. The attacker
could also use this vulnerability to perform a denial-of-service
attack by not allowing the victim to login.

3) Inviting a Friend on Behalf of the Victim

This attack is also similar to the first editing a victim’s
profile and password, except the iframe is directed to the
Friend Invite page, reunion.com/invite.do.

Reunion.com allows members to block their profiles from
being viewed by certain members. For example, a member
may set their profile viewable only by their friends. Members
can also add friends by sending them “Friend Invites”. If a
member receives a Friend Invite, they will become friends with
the inviter and gain viewing privileges to the inviter’s profile.

For this attack, the script sets the “Invitee” text field of the
Friend Invite page to our email addresses. The script then
clicks the Invite button to send the invite on behalf of the
victim. We then receive an email from Reunion.com indicating
that the victim has added us as a friend and we can now view
the victim’s profile. The following code is used to send a
friend invite on behalf of the victim:

An attacker could use this attack to view profiles they are
not allowed to view by setting the Invitee field to his own
email address. Whenever a victim that has restricted their
profile is attacked, the attacker will become the victim’s
“Friend” on Reunion.com and gain viewing rights to the
victim’s profile.

4) Creating an Album on the Victim’s Profile

This attack takes advantage of Reunion.com’s existing
AJAX scripts to add albums and set their descriptions. The
script first opens an iframe and directs it to the victim’s
Photo’s page, reunion.com/photo/album/allalbums.do.

Once the iframe has loaded, the script calls the AJAX
method PhotoDwr.createAlbum() to create an album on the
victim’s profile. The createAlbum() method is an existing
method embedded in the Photo page returned from
Reunion.com. Many other AJAX methods that attack script

var password =
targetFrame.contentDocument.getElementsbyName(‘password’);

password.value = “attackerspassword”;

var saveButton =

 targetFrame.contentDocument.getElementsbyName(‘save’);
saveButton.click();

var saveButton =
 targetFrame.contentDocument.getElementsbyName(‘save’);

saveButton.click();

var firstname =
 iframe.contentDocument.getElementsbyName(‘firstName’);

firstname.value = “Stinky”;

var iframe = document.createElement(“IFRAME”);
iframe.setAttribute(src,

“http://www.reunion.com/showEditProfile.do”);
document.body.appendChild(iframe);

var invitee =
targetFrame.contentDocument.getElementsbyName(‘invitee’);

invitee.value = “attackersemail@hotmail.com”;

var sendButton =
 targetFrame.contentDocument.getElementsbyName(‘sendInvite’);
sendButton.click();

EECE412 Fall 2008 Final Report – Group 07

4

can use are embedded in this page, including
updatePhotoAlbum(), which modifies the album information.
The following code creates an album called “test album” on
the victim’s page and sets the new album’s description to “test
description”:

When the victim views his Photos page, he will see a new

album called “test album” with description “test description”.
An attacker could use this attack to create a virus. Whenever

a victim is attacked, a new album can be created on the
victim’s profile with the description set to the script on the
attacker’s server. Now, whenever one of the victim’s friends
views the victim’s photos, the same script will be executed to
create an album on the victim’s friend’s profile. This virus
could spread very quickly if enough people viewed the
malicious album.

5) Deleting a Victim’s Reunion.com Account

Reunion.com allows members to delete their own account
with the click of one button, without requiring any additional
authentication. To do this, the script simply directs the iframe
to the Delete Account page, reunion.com/deleteAccount.do.
Once the iframe is loaded, the victim’s account is
automatically deleted, and the victim is logged out and can not
log back in.

An attacker could use this attack to delete any account he
wishes to because Reunion.com does not require the users to
re-authenticate themselves when deleting an account. With a
deleted account, availability to the victim’s account is taken,
decreasing the value of another information security property.

D. Luring Victims to Our Photos Page

Once the attacks have been made, the next step is to lure
victims to the photos page of our profile. This can be done in
many ways, including uploading interesting pictures to entice
victims to view our photos.

The next section describes some possible solutions to the
XSS vulnerabilities in Reunion.com that will prevent or reduce
the impact of these attacks.

IV. COUNTERMEASURES

As a social networking website, Reunion.com has two
possible ways of dealing with its XSS vulnerabilities:
eliminating them, or reducing their impact.

A. Eliminating XSS Vulnerabilities

There are many solutions that other social networking
websites have employed to reduce or eliminate XSS
vulnerabilities. The most effective solutions to XSS are input
filtering, input encoding, and subdomains.

1) Input Filtering
The first layer of defence to XSS attack is input filtering.

Before being stored on a server, all inputs from a website are
first filtered for common hazardous content, such as
JavaScript. Filters can be used to remove special characters
such as <, >, &, as well as some HTML tags such as “script”
[3, pp. 396-400].

This simple solution greatly increases the security of a web
application. However, the website developer must ensure that
every user input entered in a form is passed to the filter before
being stored at the server or sent back to a client’s browser. A
single vulnerable injection point can lead to a disastrous
consequence to the web application if exploited by an
attacker.

If Reunion.com filters the inputs fields from the Album
Description, a script tag such as the one described in our
attack will be detected and therefore will not be executed.

2) Input Encoding

To couple input filtering, it is advised to also encode user
input. If an attacker knows that a website uses input filtering,
he can encode special characters to their ASCII-encoded
values. For example, encoding the character ‘<’ to ‘<’
will allow the attacker’s script to bypass any input filter, since
the filter will be searching for ‘<’ and not ‘<’ [6, pp. 220].

Input encoding can be used to convert a user input into
URL-encoded values. URL encoding replaces unsafe
characters with a ‘%’ followed by two hexadecimal digits
corresponding to the ASCII character set [4]. For example, ‘<’
or ‘<’ will be replaced with ‘%3C’. The URL-encoded
value will not be recognized as the browser as HTML tags
and will therefore not be executed on the client [8].

Input filtering combined with input encoding will eliminate
virtually all possible XSS attacks on Reunion.com. Un-
encoded scripts will be detected by the input filter, and any
encoded scripts that bypass the filter won’t even be
recognized by the victim’s browser since they will be URL
encoded.

3) Using Subdomains

A major problem with input filtering and encoding is that
these techniques limit the type of information website users
can publish on their profiles. Many social networking sites,
including Reunion.com, want their users to be able to create
their own HTML content and share it by publishing it on their
profiles. Input filtering and encoding filters will eliminate most
HTML content.

A solution to this problem is for web developers to utilize
subdomains. That is, to make Website pages that allow HTML
input as sub-domains of pages that do not allow HTML input.
The Same Origin Policy implemented in all latest web
browsers does not allow scripts being executed in one domain
to access elements of a page in another domain [9].

As an example, consider Reunion.com, which allows HTML
script tags to be placed in the Photos page of the website.
Currently, the domain of the Photos page is www.reunion.com,
which is the same domain as the Edit Profile, Change
Password, and Delete Account pages. If the domain of the

iframe.PhotoDwr.createAlbum(“test album”, “”, null);

var createdAlbumID = getElementsbyName(“test album”).id;
iframe.PhotoDwr.updatePhotoAlbum(createdAlbumID, 0,

“test album”, “test description”, “”, null);

EECE412 Fall 2008 Final Report – Group 07

5

Photos page was changed to a subdomain of
www.reunion.com, such as photos.reunion.com, scripts
inserted in the Photos page would not be able to access any
elements of the other pages since the domain of the script is
different.

The Same Origin Policy works because different domains
have different cookies, and all the cookies of the same domain
have the same cookies [1, pp.22-23]. In the above example,
the Photos page will have all cookies in the
photos.reunion.com domain, but will not have the cookies of
the www.reunion.com domain and will therefore be denied
access by the victim’s web browser.

B. Reducing the Impact of XSS Vulnerabilities

One of the major vulnerabilities in Reunion.com is that the
user is not re-authenticated when performing serious actions,
such as changing a password or deleting an account. Even if
Reunion.com does not employ any techniques to eliminate its
XSS vulnerabilities, it should at least re-authenticate its users
when they request to change their passwords or delete their
account.

For further readings on other possible solutions to prevent
XSS attacks, see [2] and [5]. A paper written by Philipp Vogt
et al. suggests an interesting approach to XSS security [6].

The next section describes a similar attack to ours done on

another popular social networking site.

V. ANOTHER XSS ATTACK

The Samy Worm, which attacked MySpace.com in October
2005, was a similar attack that exploited XSS vulnerability in
MySpace.com. The worm’s payload added the comment “but
most of all, Samy is my hero” to the victim’s profile and sent a
Friend Invite to Samy, the author of the worm. It infected one
million users within 20 hours before bringing down MySpace
and was one of the fastest spreading worms [2].

The Samy Worm was similar to our attack in that it required
MySpace users to visit Samy’s profile to be executed. Victim
would be injected by the worm when he viewed Samy’s
profile. It differs from our attack in its implementation. Samy’s
attack utilized the AJAX XMLHTTPRequest POST method to
edit the victim’s profiles and add friends [3, pp. 387-388]. Our
attack utilized JavaScript to manipulate iframes and DOM-
based objects.

The Samy Worm showed the social networking community
how popular websites are prone to XSS attacks. Unfortunately,
many websites, including Reunion.com, have still not
eliminated the threat of XSS.

VI. CONCLUSION

Our analysis on Reunion.com has showed that an XSS-
vulnerable web application, specifically a social networking
site, could put its users’ privacy and personal information at
risk. Not only can an attacker modify a victim’s profile, but he
can also highjack a victim’s account by changing his
password or deleting the victim’s account.

The design of Reunion.com does not follow several
principles of designing secure systems. Our attacks also show
that the confidentiality, integrity, and availability of
information on Reunion.com can be compromised.

To aid Reunion.com in patching its XSS security holes, we
will report our findings to Reunion.com so that these
vulnerabilities can be addressed in the near future.

REFERENCES

[1] R. Cannings, H. Dwivedi, and Z. Lackey, Hacking Exposed: Web 2.0.
NY: McGraw-Hill, 2008.

[2] J. Grossman. Cross Site Scripting Worms and Viruses: the Impending
Threat and the Best Defense. presented at the 2006 Whitehats
Conference [Online]. Available: http://net-
security.org/dl/articles/WHXSSThreats.pdf

[3] F. Seth, J. Grossman, R. Hansen, A. Rager, P. Petkov, XSS Exploits:
Cross Site Scripting Attacks and Defense. Burlington, MA: Syngress
Publishing, Inc., 2007.

[4] J. Scambray and M. Shema, Hacking Exposed: Web Applications. pp.
200-230. Barkeley, CA: McGraw-Hill, 2002.

[5] A. Klein, “DOM Based Cross Site Scripting or XSS of the Third Kind,”
July 2005.

[6] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, G. Vigna,
“Cross-Site Scripting Prevention with Dynamic Data Tainting and
Static Analysis,” Secure Systems Lab, Technical Univ. Vienna and
Univ. California, 2007.

[7] D. Stuttard, M. Pinto, The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws, pp. 40-50. NY: McGraw-
Hill, 2006.

[8] J. Erickson, Hacking: The Art of Exploitation, pp. 80-85. NY: McGraw-
Hill, 2007.

[9] S. Cook. A Web Developer’s Guide to Cross-Site Scripting [Online].
Available: http://www.grc.com/sn/files/CrossSiteScripting.pdf

