
 1

Security Analysis of Terra:Battle for the Outlands

Neeraj Prashar (neeraj.prashar@gmail.com) 1, Cloud Shao(cshao3@interchange.ubc.ca)2,
Adnan Jiwani(jiwaniadnan@gmail.com)3 and Arash Malekzadeh(arash8m@gmail.com)4

1Software Engineering, University of British Columbia, Vancouver, BC V6T1Z4 Canada

2Computer Engineering, University of British Columbia, Vancouver, BC V6T1Z4 Canada
3Computer Engineering, University of British Columbia, Vancouver, BC V6T1Z4 Canada
4Software Engineering, University of British Columbia, Vancouver, BC V6T1Z4 Canada

Abstract—Tasked with performing a security analysis of the
massively multi-player online game Terra: Battle for the
Outlands, we completed a threat analysis on the product. User
experience is the most significant asset at stake. Cheaters,
hackers, and identity thieves all pose threats. As a result of our
experimentation, we found that the system is vulnerable to
several attacks including online dictionary attacks, password
snooping, denial of service, API hooks, and unauthorized e-mail
sending. The system was reasonably strong against SQL
injection, packet injection, DLL injection, database-specific
(MySQL) vulnerabilities, and race conditions. We discuss the
principles of secure systems that were violated causing these
vulnerabilities and provide insight on how to build more secure
systems using these findings.

Index Terms—Client-server systems, Computer Crime,
Games, Security

I. INTRODUCTION
nline games are a class of software that is purely for
entertainment, yet heavily dependent on security. When

attackers are able to break the security and cheat within a
game, the entertainment value of the game can drop
significantly. This makes the experience far less enjoyable for
users and effectively undermines the software's purpose. In
addition, identity theft in any application in the online world
can result in the theft of the same user's identity in other
applications.

A. Significance
The significance and impact of our research is not limited to

this particular online game. Developers often have similar
habits when writing software, and even if they do not, security
holes could lie in third-party libraries that the developers have
little control of. Games are a $6 billion market that grows at
10% per year and according to Microsoft, gaming is the third
most common activity on its platforms [1]. As such, the stakes
here are higher than one might expect.

Massively multi-player online games, with their huge
numbers of concurrent and overall users, are on the cutting
edge of distributed software. These are some of the first large-
scale distributed real time systems in the world, and what
better proving ground is there for such new technology than a
game? Developers should benefit from paying attention to the
developments happening here before they soon become wide
spread in other areas of software. As Hoglund and McGraw
put it, "the security story in the gaming world may be a

harbinger of things to come in the rest of the online world"
[1].

B. Background
Terra: Battle for the Outlands was developed originally by

Kaon Interactive, and most recently by TerraOutlands. In the
game, players gain experience points, claim land, and build
their own assets. All other players exist in the same persistent
game world where their assets exist and need to be defended
even when the players are not logged in. Currently the game is
free with an optional donation.

Signup is done through an online form. Players enter their
email address and are sent an account creation key, which they
use to create a new account. Players then download the game
installation executable and install the game client to their hard
drive. To start the game, a player enters his/her credentials
into the game client. The client application is only available
for Windows x86.

C. Assets and Threats
For developers of the game, there is often significant

monetary value in the successful operation and intellectual
property of the game. For users, it is as important to preserve
the integrity of their identity and the secrecy of their
credentials as it is in many other online applications. The
primary assets at risk are the user experience, income for the
game studio, and the user's online identity.

User experience is not a tangible asset that is represented by
any specific resource or function. It is difficult to assign a
specific value to this asset and the best we can do is say that
the game studio's income from the game (on the order of
$1000's) is at stake if users are unhappy. We expect the
primary threat agent in most of these cases to be malicious
users intent on cheating.

All CIA (Confidentiality, Integrity, Availability) properties
are covered by these threats. Confidentiality is threatened by
snooping and spoofing. Modification of game state threatens
integrity and availability is threatened by the possibility of
DoS (Denial of Service).

Users' identities in the game are not necessarily of

significant value. User credentials, however, have been shown
to be consistent across different systems. According to "A
large-scale study of web password habits" by Florencio, D.
and Herly, C., the average password is shared across 3.9

O

 2

different sites [2]. This means that a compromised identity on
Terra can lead to compromise of the same user's identity
elsewhere. Threat agents for this threat include identity thieves
and malicious users.

II. ANALYSIS
In this section we will describe the Terra system, its

composition, and its security properties from an outsider's
perspective. We listed all the attacks that the system could
hypothetically be vulnerable to during the proposal phase of
the project, and here we will provide that list. We will then
attempt to provide insight on which attacks worked (or didn't
work) and why the vulnerabilities existed (or didn't exist).

A. Description
Terra’s backend comprises of only one web server running

Apache 2.2.9, on a Linux (Fedora) based operating system
with ports 22 (ssh), 25 (mailserver), 80 (http), 541 (osiris),
3306 (mySQL), 8801 (Firewall). Its alias name is
terracorps.com and the actual hostname is terraoutlands.com.
The authoritative domain name servers that have a Resource
Record (RR) of terra are ns51.domaincontrol.com and
ns52.domaincontrol.com. This information was obtained
using primitive Unix tools like nmap and dig.

B. Proposed Attacks
There were a number of attacks attempted on both the

TerraCorps website and the game. The following subsections
list and explain each type of attack.

1) SQL Injection
SQL injections are one of the major threats to any system

that stores information. According to Art Wittmann's article
“The Fastest-Growing Security Threat”, “the number of SQL
injection attempts has gone from a few thousand a day last
year to more than half a million a day now” [4]. In SQL
injection, the attacker inserts SQL statements as input to the
application which are later processed by its database
management system. If the application does not validate
inputs, the attacker’s SQL statements can execute and produce
results that an attacker can analyze to determine the database
structure of the application. He/she can then write specific
SQL statements that retrieve critical information stored on the
attacked system.

2) Password Brute Force
“An ideal password is something that you know, something

that a computer can verify that you know, and something
nobody else can guess – even with access to unlimited
computing resources” [5]. In practice, humans typically cannot
remember more than 8 character passwords with uppercase
and lowercase letters, numbers, and special characters such as
“!@#$”. As a result, many passwords can be cracked by trying
different combinations of characters mentioned above. This
strategy of using computing resources to crack a password by
trying all different combinations is called brute forcing.

3) Packet Injection
Packet injection exploits communications between the

client and the server. The client sends the server a packet
requesting certain information. The server, upon receiving the
packet, replies back to the client with the information
requested. In Packet injection the attacker simply creates a
packet on behalf of the client, without client’s knowledge, and
passes this packet to the server. The server, oblivious to who
created the packet, replies back with information that the
attacker requested.

4) Denial of Service
DoS (Denial of Service) is a form of an attack that prevents

one or many users from accessing the resources and services
of a server. This attack is of low technical impact and does not
threaten data integrity and confidentiality, but it can negatively
affect the company. Users would be less inclined to donate
funds when the service is not regularly available. Reduced
donations mean less development and advertising money for
the company.

Denial of service attack can be done on either the server or
the client. In the case of server DoS, the attacker floods the
server (online system) with numerous false requests to
overload it. The server becomes unavailable to actual
legitimate clients that want to use the online system. In the
case of client DoS, the attacker gains access to the client’s
account and prevents it from connecting to the server.

5) Memory Analysis
Being an online multi-player game, competition could

promote cheating in the game. Using Memory analysis, one
can manipulate the game’s memory such that it gives one an
advantage over his/her opponents. For example, the attacker
can modify the memory address which stores an ammunition
value so it never decreases even when the attacker fires in the
game.

6) Password Snooping
In a snooping attack, the attacker simply inspects packets

going between the client and the server to discern some useful
information. In terms of password snooping, the attacker
specifically looks for the packet in which the client sends its
login credentials to the server for verification. Once the
attacker has the login details he/she can later impersonate the
client and have access to the online resource.

7) E-mail Impersonation
In email impersonation the attacker first remotely connects

to a company's mail server and then using mail protocols such
as SMTP sends an email to the employees at the company
pretending to be a co-worker. Since the emails come from the
local servers, the company's defense mechanisms (anti-virus
programs, filter, etc) are more likely to let the email go even if
it contains malicious content. Once the employees get the
email, they too trust internal mail and are more likely to either
execute the malicious content in the mail or even reply with
requested information in the e-mail..

8) DLL Injection
Dynamic Linked Libraries (DLLs) are libraries that contain

executable instructions that can be used by windows
applications. In DLL injection the attacker first figures out

 3

which DLLs the system is using during execution and then
removes that DLL and loads a malicious DLL that if executed
would exploit or crash the system.

9) Race Condition
Race conditions occur when “a transaction is carried out in

two or more stages, and it is possible for someone to alter it
after the stage that involves access rights” [6]. This type of
attack seeks to exploit a lack of complete mediation. An
attacker exploits such transactions to gain access to protected
resources in the system memory, to either break down the
system or get an upper hand if the system is a game.

10) Buffer Overflow
In this attack the attacker sends a string of size for example

2N as an input to a system. The string is then sent to the server
that copies it to a buffer that has a length of N characters.
Since 2N is greater than N a buffer overflow occurs. Buffer
overflows can be used in many different ways depending on
how the server deals with them. For example, if the server
simply crashes on a buffer overflow then this can be used to
launch a DOS on the system.

C. Vulnerabilities
The following subsections detail the vulnerabilities we

found in both the game and the web server, the tools we used
to find them, and the methodologies employed.

1) Denial of Service
Two different DoS attacks were performed on the system.

Neither was an "attack" per-se; they were only side effects of
defenses against our other attacks. The first one was caused by
Terra putting an IP range ban on the entire UBC campus. This
was performing result of us trying a password brute attack,
which created 60 HTTP requests (TCP connections) at a time.
The attack ran for seven hours and we believe that
administrators at Terra may have detected it and banned our IP
range, inadvertently cutting off access to all users at UBC.

The second attempt to cause DoS involves individual user
accounts. A player can be suspended from playing the game if
they use a known cheating tool. Using an experimental
account we created, we played the game using victim’s
username and password, and also used a program called
“Cheat Engine” which resulted in the user account getting
suspended. By using another player’s credentials, we can get
them banned from the system in this way.

2) Password Brute Forcing
Terra’s website enforces the rule that users must choose

user names and passwords with a maximum length of 8. As a
result, the chosen passwords tend to be a short combination of
English words and/or digits. Since TerraCorps allows users to
have an unlimited number of tries for guessing the correct
password in order to login, the website is vulnerable to
password brute forcing. Using a brute forcing tool called
“Brutus” it is possible to perform a dictionary attack on one or
many users. Although this attack is slow due to the fact that it
deals with HTTP requests, we were able to find the password
of 15 users out of a list of 100 users. The list was retrieved

from TerraCorps website by accessing the clan member page.
The attack took about 12 hours to complete and was run on
one computer at a time. In an effort to avoid setting off
automatic firewall alarms, the maximum number of HTTP
requests was set to 10.

FIG. 1 Screen shot of Brutus

3) Password Snooping
Although this attack (in its experimental form) requires the

victim and the hacker to be under the same network subnet, it
is still of great importance. When logging in to the website,
usernames and the passwords are sent to TerraCorps server in
plain text. This means that anyone with the ability to sniff
HTTP request packets can view the username and the
password in those packets.

In order to monitor the packets being sent out from a
particular computer, we took advantage of a technique called
ARP poisoning to perform a Man In the Middle Attack. ARP
is a protocol used within subnets to allow computers identify
themselves to the router. For example one computer would ask
“who has IP x.x.x.x”. The computer with that IP would
respond by sending its MAC address. “Cain & Able” is a tool
that offers ARP poisoning. Using this tool, it was possible to
tell the victim’s computer that we are the router, and tell the
router that we are the victim.

After establishing ourselves as the Man In the Middle, we
were able to see the HTTP packets coming from the victim’s
computer, which contained the username and the password.
This can also be achieved using a WiFi card that is capable of
sniffing packets in promiscuous mode. The figure below
displays the player’s username and password in a packet,
which is “dankill” in this case.

FIG. 2 Snooping Usernames and Passwords

 4

4) Telnet/SMTP
It was discovered that the TerraCorps server has port 25

open, which is a known port for telnet access. Using the
system's telnet server we were able to connect to their mail
server and send emails internally to any employee with the
email address of xxx@terraoutlands.com. The mail server
only allows sending emails to the addresses ending with
“terraoutlands.com”.

There are two threats associated with this vulnerability. One
threat is that it is possible to send fake emails containing
malicious URL’s to the employees from a trusted source such
as admin@terraoutlands.com. As it is shown in Fig.3, since
this message is being sent from the TerraCorps mail server, it
would be far less likely to be marked as junk. Though the use
of those e-mails to perform further attacks is not within the
scope of our project, those e-mails sent could contain some
malicious content, which could result in exposure of the
company’s private data.

This brings up another vulnerability in that it allows hackers
to verify if a particular username@terraoutlands.com exists.
This vulnerability enables us to obtain a list of users and
possibly perform a brute force attack to hack accounts that
belong to employees who could have higher privileges.

FIG. 3 Unauthorized Mailserver Access

5) API Hook (Speed Hack)

Speed hacks exploit the fact that the game client uses calls
to the Windows API for timing purposes. Those calls can be
intercepted, and the result can be multiplied by some factor.
This multiplies the amount of time passed by some factor so
that the game client believes that more time has passed,
resulting in the game progressing faster. There are many
implementations of speed hack available on the internet. We
used the implementation integrated into a multi-purpose
cheating tool called “Cheat Engine” which gave us the ability
to fire faster and get through some in-game sequences faster
such as running to our vehicle. From our observations, we
believe that Terra does not have any automatic mechanism for
detecting speed hack, though it does have the ability to detect
some other side-effects of Cheat Engine.

D. Strengths
This section outlines all the unsuccessful attacks that were

launched against the web server that hosts Terra, and briefly
describes the techniques and tools used, as well as the results
obtained and how it reflects the security level of the web
server.

Like any online, centralized-server based game that has a
large user base, there is bound to be some sort of a backend

database that records user information, account status, player
records, etc. This opens up the possibility to exploit the
database server by trying SQL injection attacks. These attacks
try to exploit unverified, malicious user-crafted SQL
statements that attempt to run SQL code against the web
server.

Using nmap4, we found that port number 3306 was open
for database queries and was running version 5.077 of MySQL
database server. Using Perl, a simple script was written to
connect to the database, and attempts were made to match
dictionary passwords with usernames like admin, root, user,
etc. As a response to the initial challenge request, a hand-
crafted packet with bogus data was sent. However, the web-
server was able to handle these packets, most of which were
on average 6000 bytes, and still returned could not connect
message.

In the “Lost password” section on Terra’s website, a user
can request to be sent his account information if he forgot that.
Several crafted replies like

‘some-text’ OR ‘x’ = ‘x

were tried in order to trick the web server to send a user’s

information to any e-mail address. It turned out that the web
server does not take dynamic information such as the e-mail
and username using the HTTP Get and Post Methods and
instead parses everything using a Perl file
(account_management.pl) and then sends this information in
some sort of a packet to be authenticated with the backend
server. An open source tool called sqlmap was used to try
more sophisticated SQL injection attacks.

Terra was protected from DLL attacks in the sense that the
terrain maps and user information was loaded when one
logged on using tcp/ip packets. Contrary to our assumption,
the game was not using operating system DLLs while in use,
even though the actual game did use a few DLLs for
installation. Due to this, we could not perform our attack to
modify OS drivers to see through mountains or avoid fireballs
or become invisible when being fired on [3].

Handcrafted TCP/IP packets along with their headers were
also sent to the server simultaneously while having a game
session open to see if we can disrupt user experience either by
lagging the game or somehow break an existing connection.
We were greeted with a “bad handshake” message as a receipt
of the packet.

Buffer overflow attacks were attempted manually against all
possible user input fields, however, it seems like all the text
fields only allowed up to a certain number of characters to be
entered and almost every user input field was being parsed
through a Perl file instead of using manual GET and POST
methods. The attacks were attempted using code written in
java, which used reply and request objects to send the data to
the web server.

III. DISCUSSION
In this section, we will briefly list the basic principles of

designing secure software systems. Principles that we felt

 5

were violated will be discussed in detail and suggestions will
be provided on building systems which might better fulfill
those design principles.

A. The Principles of Designing Secure Systems
The principles of designing secure software are guidelines

for building any type of online system. They are not absolute
rules and not all of them can be applied to every system.

For convenience, listed here are the ten principles of
designing secure software (from the EECE 412 Principles of
Designing Secure Systems Lecture Slides):

1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Privilege
7. Least Common Mechanism
8. Psychological Acceptability
9. Defense in Depth
10. Question Assumptions

In the following paragraphs we will discuss the principles of
designing secure software that we felt may have been violated,
along with countermeasures. The reader must keep in mind
that as outsiders of Terra, some of our arguments may
represent only our best guess about the system given the
evidence we see.

B. E-mail Impersonation and Countermeasures
On an open interface like telnet the principle of least

privilege should be followed. Anonymous users should
possess the least privilege necessary, which in this case is
likely no privilege at all. If the interface was actually used for
some purpose, it would make sense to create other users on the
system and require authentication for them to perform their
tasks. This is also related to separation of duty; if an
anonymous user was able to log in to the system, it would
make sense to require separate credentials in order to send e-
mail.

C. Online Brute-Force/Dictionary Attack and
Countermeasures
The system, through the sign-up process, limits user names

and passwords to eight characters. Economy of mechanism
states that the system and its mechanisms should be as simple
as possible. It would be beneficial to question the purpose of
the limit and evaluate whether the system would be more or
less complex as a result of removing it. Psychological
acceptability also suffers when users are limited to eight
characters. Allowing users to create longer passwords and
encouraging them to use more secure passwords containing
different types of characters would be the best
countermeasure.

The other problem is that continuous retries are allowed.
The system incorrectly assumes that if a user tries to log in
and fails, then they must have simply mistyped the password.
We recommend that exponential back-off or jailing be used to
prevent continuous retries.

D. Password Snooping and Countermeasures
When dealing with snooping, the principle of least

common mechanism is often brought into question. In this
case, HTTP was used to transfer login credentials. The
assumption might have been that the channel could be
trusted, which was incorrect as illustrated by our fairly simple
ARP poisoning demonstration. The use of a secure channel
such as SSL for authentication would have prevented this
problem. Users can partially protect themselves by connecting
with internet routers through secure channels only.

E. API Hook (Speed Hack) and Countermeasures
In order to do timing, the game uses Windows API calls. In

our opinion, the bigger issue is that the game client cannot be
assumed to be trustworthy since it can be controlled by an
attacker. We found that the player position seems to be
verified on the server side, but not every action is verified by
the server. For example, the client can rotate its turret or fire
its gun as fast as it likes without being pulled back by the
server. Going one step further, we noticed that when using the
speed hack, our game client would send packets to the server
at a much higher rate. As a countermeasure, the server may be
able to detect the continuously abnormal communication.

Terra’s game server seems to send information of other
players’ locations to the client regardless of whether the client
can see those players or not. On a rogue client, this means that
the attacker can see more information they should be able to
see. One way to prevent this is to only send the client
information about objects that are in its visual field. Doing so
would conform to the principle of least privilege.

F. Denial of Service and Countermeasures
Denial of service in our examples simply comes as a

consequence of banning being misapplied on the system.
System administrators should question the assumption that
hackers are the only ones that use the IP range from which
they attack. In this case, the entire UBC IP range was banned,
and it is not improbable for legitimate players to have been
playing at UBC. As well, the assumption that users who cheat
are malicious is simply not true in this case. The best way to
prevent this denial of service happening would be to maintain
account integrity by protecting against password disclosure.
As well, it might help to employ open design and consult the
user community in setting anti-cheating policies, which have
provisions for recovery of accounts in case of hijacking.

In the end, we still believe that the best defense against this
particular denial of service situation is to provide defense in
depth by securing the system against the prohibited cheats and
attacks. The system would be inherently hardened and
administrators would not need to worry about wrongly
banning legitimate users.

IV. CONCLUSION
Throughout the course of this project, we found all of the

CIA properties to be at risk. Confidentiality was reduced as a
result of the snooping and dictionary attack vulnerabilities.
Integrity was reduced when speed hack was employed to

 6

perform unauthorized movements in the game. Availability
was compromised when we discovered a method to get an
individual user banned and when an IP range ban was placed
on the entire UBC network.

The recommended countermeasures include: transporting
credentials over a secure channel; using exponential back-off,
jailing, or momentary disabling; removing the 8 character
username/password limit; closing all but essential ports on
firewall and servers; and performing more action validation on
the server-side rather than the client side.

An asset/threat analysis revealed that the most significant
asset in games is probably the user experience. If a game is
made unmemorable, the game studio's income suffers. As
well, the disclosure of users' credentials can have enormous
impacts on both that user and the game company. These
findings are not only applicable to Terra; any online game
should be aware of these issues. Furthermore, the online
software community in general should be acutely interested in
the security of online games as other types of programs move
toward a massively online, distributed model.

We believe that our contribution to the field of computer
security with this project has been the discovery of additional
techniques, like the mail-server hack, as well as promote ideas
as to how one can exploit a commercial web server that hosts
an online user game with an increasing customer base. We
have shown that web servers that host online virtual worlds do
need to be thoroughly tested before they are deployed and
simple acts like leaving the username and password
unencrypted can potentially lead to the discovery of other
major flaws.

ACKNOWLEDGMENT
We would like to thank Professor Konstantin Beznosov of

the UBC Electrical and Computer Engineering department for
his assistance in helping us get in touch with the
administrators from Terraoutlands and providing us with
reading material that helped us in this project. We would also
like to extend our gratitude to Dale Jackman for being
supportive, responsive and considerate of our requests like
providing logs, removing bans, etc.

REFERENCES
[1] Hoglund, Greg and McGraw, Gary. Exploiting Online Games: Cheating

Massively Distributed Systems. Boston, MA: Pearson Education, Inc.,
2008.

[2] Florencio, D. and Herley, C. “A large-scale study of web password
habits,” In Proceedings of the 16th international Conference on World
Wide Web (Banff, Alberta, Canada, May 08 - 12, 2007). WWW '07.
ACM, New York, NY, 657-666.

[3] Yan, Jeff and Brian Randell. "A Systematic Clasification of Cheating in
Online Games." NetGames 05. New York: ACM Press, 2005.

[4] Wittmann,Art. “The Fastest-Growing Security Threat”.
InformationWeek. ABI/INFORM Global,2009.

[5] Stamp,Mark. Information Security: Principles and Practice. Hoboken,
New Jersey: Wiley-Interscience- John Wiley & Sons, Inc. 2006.

[6] Anderson, Ross. Security Engineering: A Guide to Building Dependable
Distributed Systems.1st Edition. Wiley, 2001.

