
ECE 412 Term Project Report 1

Design and Implementation of a Paper De-shredder

December 6, 2010

Hei Wang Chan, Evan Gillespie, Delfino Leong

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, Canada

HeiWang@hotmail.com, EvanGillespie1@gmail.com, Delfino.Leong@gmail.com

 Abstract – A free program, De-Shredder,

has been constructed which will reassemble

documents which have been shredded. Paper

shredding is essentially an insecure cryptographic

algorithm, and the De-Shredder project

demonstrates this. Documents are shredded to

reduce the availability of information, a process

which this paper will show to be insecure. Current

methods of reassembling shredded documents are

not available to most individuals because of time or

funding constraints; by releasing De-Shredder

freely, any dedicated person has access to shredded

information. The De-Shredder reassembly

algorithm has been validated by reconstructing

several single documents. Recommendations are

included to improve the software for more

practical use.

I. Introduction

any critical documents are not stored

electronically, but are instead printed

onto paper. Often this paper is shredded as a

means of destruction. Paper shredding is a weak

cryptographic operation, similar to a block

cipher. 'Blocks' of paper are rearranged, but not

actually altered. Security in shredded paper is

achieved by obscurity, which is not secure at all.

Paper shredding is a rare case of computer

security which does not live entirely in the

virtual world.

In many cases, incriminating documents are

shredded by corporate criminals. Legitimate

authorities which have claim to the information

cannot obtain it. Thus, availability of essential

information is compromised. Although there

exists services to reconstruct shredded

documents, all are very expensive or difficult,

making them infeasible to all but the most

dedicated individuals. Paper shredding is a

practice which the populous incorrectly

considers to be secure because of the current

difficulty in reversing the act of shredding.

Although the task of rearranging 'blocks' of

ciphertext to produce plaintext is possible by

hand, it should ideally be automated using a

computer. Using software, it is possible to

reassemble a shredded document from only the

scanned strips of paper which have come out of

a shredder. We propose to build a first version

of such a piece of software and distribute it

freely to anyone who is interested. This

software will prove the feasibility of an

algorithm, but will not yet be practical for all

reverse-shredding purposes in the scope of this

project.

II. Related Work

A service currently exists, Unshredder, which

offers to rebuild shredded documents. They cite

themselves as “the first commercial document

reconstruction tool in the world.”[1] A

subscription to the Unshredder service costs

thousands of dollars per year, will only

reconstruct a limited number of documents, and

requires special hardware which is only

available at addition cost[1]. The De-Shredder

project is in a different space than Unshredder

because it is a freely available, “open-source”

program.

Several guides show readers how to assemble

shredded documents by hand[2]. Currently, this

M

ECE 412 Term Project Report 2

is the most viable solution to assemble a

shredder piece of paper. However, this method

is inconvenient, very slow, and is limited to

only a few pieces of paper.

Photo stitching is a field of software, which is

similar to document reconstruction. Examples

include Autostitch and CleVR[3]. These

programs combine many smaller photos into a

large panorama. Photo stitching is similar to

shredded document reconstruction in that many

smaller pieces are combined to make a larger

image[4]. The major difficulty in reassembling

shredded documents is that no overlap exists in

the images, as it does when combining photos.

Finally, a project is currently underway in

Germany to reconstruct intelligence documents

which were shredded by the secret police

during the final days of the communist regime

in East Berlin[5]. This task is much greater than

any reconstruction ever attempted with

hundreds of thousands of papers being

reassembled. The project in Nuremberg is

similar to the De-shredder project, but differs

greatly in budget, scale, and availability to the

public.

III. Our Solution

 A. Overview

 The program should ideally require little or

no human intervention and have a simple user

interface. The proposed solution is summarized

in Figure 1. The user first scans the shredded

strips into the computer on top of a coloured

background. A MatLab script then processes

the image to isolate each strip and align them

vertically. The edges of all the strips are

matched in our program, and the matched pairs

are displayed for verification. Finally, the

assembled image is displayed to the user. The

individual steps are described in detail below.

FIG 1. Illustration of the main steps in re-assembling the

shredded document

 B. Image processing

 Once the strips are scanned into the

computer, a MatLab script is used to process

the image. The contrast of the initial image is

first increased to amplify the differences

between black text, white paper, and the red

background. Using colour thresholding

techniques, we assign each pixel as a red, white,

or black pixel. The general contours of the

strips are then given by the union of the black

and white pixels. Next, we label each region

(strip) using a MatLab function called

bwlabel[6].This function calculates the centroid

and the relative lengths of the major and minor

axes, which allows each strip to be rotated and

aligned vertically. Since the strip is not a

perfect rectangle, a minimum bounding box is

used to enclose and crop the strip from the

larger image. The imaging processing script

iterates through the same process for all the

remaining strips, resulting in individual strip

images which are all aligned vertically, and

composed of only white, black, and red pixels.

Figure 2 is a screenshot of the strip images after

processing.

ECE 412 Term Project Report 3

FIG 2. Processed strips

 C. Matching Initialization

 After the strips are created and processed by

the MatLab scripts, the individual strips are fed

into the program for matching. The matching

algorithm first creates two arrays of pixels for

each strip, one for each the left and right edge.

A left edge pixel is defined to be the left most

non-red pixel in the strip image, and vice versa

for the right edge. The edge pixels for the

length of each strip form the basis of the

matching algorithm, and are used to compare

with other strips to find the best possible

matches.

 D. Matching Algorithm

 The matching algorithm initially compares

each edge pixel array directly with the

corresponding edge pixel of another strip. It

looks for matching pairs of pixels between each

strip. For example, if an edge array has a black

pixel at location index „i‟, and another strip also

has a black pixel at location index „i‟, these two

strip‟s matching coefficient will increase. The

increase in the matching coefficient also

depends on which colour is matched. If an edge

is mostly white, the matching of two black

pixels would increase the matching coefficient

more than the matching of two white pixels.

The pixel comparison is repeated for the entire

length of the edge. One of the strips is then

offset by one pixel, up or down, and compared

again. The final matching coefficient used is the

highest calculated coefficient after applying

every offset within +/- 0.25% of the total strip

length. For a typical letter head sheet of paper,

this is an offset of up to ± 4 pixels. This offset

helps to alleviate any errors created during the

scanning process or during our earlier image

processing. This entire process is repeated for

each strip. In this manner, the right edge of

each strip is compared with the left edge of

every other strip to produce a two dimensional

matrix of matching coefficients.

Figure 3 shows pairs of strips matched by this

algorithm:

FIG 3. Matched pairs of scanned strips.

 It can be seen from the figure that the

algorithm provides fairly accurate results for

the matched strip pairs. It is possible to read

off text and predict words in the document

without much difficulty or ambiguity.

 E. User Input and Edge Strips

 Next, our program will prompt the user to

specify the strips corresponding to the left and

right edge of the document. This step is

necessary to reconstruct the document as it is

ECE 412 Term Project Report 4

highly difficult to create the final image without

an initial point of reference. With the user

specifying the edge strips, we can gradually

build the final document by recursively

appending the strip with the highest matching

coefficient to its predecessor, starting with an

edge strip.

 Although our algorithm provides fairly

accurate results for most matched strip pairs, it

is very difficult to achieve perfect matching for

all pair of strips. De-shredder compensates for

this by allowing the user to mark a pair of strips

as incorrect. Upon refreshing, the program will

display the next best matched pair for any

incorrect strips.

FIG 4. User inputs to verify the matched pairs.

 Once the user is satisfied with each pair of

strips, he or she may view the final image of the

assembled document. Figure 5 shows the final

image of a document reconstructed using De-

Shredder. As shown in the figure, the user can

easily read and extract the information from the

document.

FIG 5. Reconstructed image of a document.

IV. Discussion

De-Shredder manages to piece together

shredded documents which have been scanned

using the method described above. The

matching algorithm has been verified, but the

software requires a lot more work to become

practical. Some of the current issues with De-

shredder are discussed below.

 A. Human input

 The system currently requires a lot of

human input to reassemble the trickiest

documents. The human user must repeatedly

select which strips which have been matched

improperly. The user must carefully examine

each matched pair to verify that the strips match;

this can take up to 30 seconds for a single pair

of strips. On difficult documents the user must

perform this check 10-20 times every iteration,

for up to 15 iterations. The human verification

presents a significant obstacle limiting De-

Shredder from being practical for final users.

To solve this problem, the algorithm used to

compare the strip edges and to arrange the

compared strips must be improved.

 B. Improving the Matching Algorithm

 Practical applications often ask for more

robust document reconstruction than De-

Shredder currently offers. As noted above, De-

shredder currently only uses the direct

comparison method to match edges of the strips.

We may improve the matching algorithm by

comparing the derivatives (slopes) of the black

and white lines near the strip edge. It may also

be possible to use the curvature of the edges to

improve the accuracy of the system.

Furthermore, De-shredder could also employ

optical character recognition (OCR) to validate

the matched pairs before displaying the result to

the user. However, this would only be feasible

for text-based documents.

ECE 412 Term Project Report 5

 C. Improving Strip Arrangement

 The strips are currently arranged using the

algorithm outlined above and requires the user

to specify the edge strips. The problem of

arranging strips without a point of reference is

similar to the “Travelling Salesman Problem”

in mathematics, which has been studied

extensively and found to be NP-Hard [7]. After

improving the algorithm with the suggestions

above, there should be less user input required.

 D. Cross Shredding

 Some documents are shredded using a

“cross-shredder.” Cross-shredders cut the paper

in two directions. De-Shredder should be able

to compare and match all four sides of each

paper shred to accommodate for cross

shredding. In order to do this, all four sides of

each strip need to be compared. The algorithm

outlined above would be adequate for

comparison and matching if extended.

 E. Multiple Pages

 Most applications require reconstruction of

many documents from many strips of paper.

De-Shredder cannot yet accomplish this task

and only works for single sheets. The same

underlying algorithm can be used to reconstruct

multiple documents as are currently used for a

single document. One of the most important

additions for De-Shredder to be practical is the

capability to reconstruct multiple pages and to

be able to separate individual pages from each

other.

 F. Missing Pieces

 Often, a user will not have access to every

shred of paper in order to reassemble a

document. Currently, this will cause produce a

single document with a discontinuity, which

should remain readable by the astute user. To

solve the problem of missing strips, De-

Shredder should produce distinct sections of a

reconstructed document. The missing piece

problem would be solved by accommodating

for multiple documents as above.

VI. Conclusion

De-Shredder, a free program to reconstruct

shredded documents, has been produced. The

software is currently in a first version and is

able to reconstruct the documents, but more

advanced matching algorithm must be

implemented to make the reconstruction

procedure more practical for the end-user.

Acknowledgement

We would like to thank Professor Konstantin

Beznosov from the Electrical and Computer

Engineering department at UBC for providing

us with reading material about the many

security concepts involved in creating and

deciphering secure systems.

References

[1] “Unshredder”, Safe Guard Ltd. (2010)

Available at: http://www.unshredder.com/

[2] “How to Reconstruct Shredded Documents”,

eHow Journal (2009) Available at:

http://www.ehow.com/how_4768399_reconstruct-

shredded-documents.html

[3] “Clevr Photo Stitching” (2010), Available at

http://www.clevr.com/

[4] M Brown, D Lowe “Automatic Panoramic

Image Stitching using Invariant Features”

University of British Columbia, 2007. Avaliable at

http://cvlab.epfl.ch/~brown/papers/ijcv2007.pdf

 [5] “Germany‟s Effort to Stitch Together Millions

of Shredded Secret Documents”,

The Wall Street Journal (2007, May)

Avaliable at:

http://blogs.wsj.com/numbersguy/germanys-effort-

to-stitch-together-millions-of-shredded-secret-

documents-103/

[6] “MatLab Image Processing Functions”

MathWorks Inc.

Avaliable at:

http://www.mathworks.com/help/toolbox/images/re

f/regionprops.html

[7] G Dantzig, R Fulkerson, and S Kohnson.

“Solution of a Large-Scale Travelling-Salesmen

Problem” The Rand Corporation, Santa Monica,

1954.

http://blogs.wsj.com/numbersguy/germanys-effort-to-stitch-together-millions-of-shredded-secret-documents-103/
http://blogs.wsj.com/numbersguy/germanys-effort-to-stitch-together-millions-of-shredded-secret-documents-103/
http://blogs.wsj.com/numbersguy/germanys-effort-to-stitch-together-millions-of-shredded-secret-documents-103/
http://www.mathworks.com/help/toolbox/images/ref/regionprops.html
http://www.mathworks.com/help/toolbox/images/ref/regionprops.html

