
EECE 412 Term Project Report

1

Abstract – This paper analyzes the security of the i>clicker student
response system: a system which enables interactive learning that is
widely used in North American schools. This paper uncovers
potential security vulnerabilities of the system and shows how they
lead to significant exploits involving disruption, disclosure, and
impersonation attacks. In addition to identifying potential
vulnerabilities and exploits, this paper outlines possible solution
sand ways in which to mitigate the risks of assets at stake when
using the i>clicker system.

I. INTRODUCTION

HE i>clicker audience response system enables an
interactive learning environment in which students can

instantly provide feedback and answer questions posed to
them by instructors during lectures. According to the i>clicker
corporate website: 679 post-secondary schools, 160 K-12
schools, 72 corporations in North America are currently using
i>clicker [1]. At the same time, a brief internet search
regarding security analyses of the i>clicker system returns
very few relevant results. As the i>clicker can be used for
answering everything from marked questions affecting a
student's grade to anonymous polling sessions – the
importance of security and accuracy in the i>clicker system
becomes quite an apparent and pertinent issue to not only the
numerous current users but also potential future adopters.

The security analysis of the i>clicker (also stylized i>clicker)
outlined within this paper builds upon previous efforts in
reverse engineering RF based clicker response systems. Our
analysis shows the i>clicker system is susceptible to exploits
involving service disruption, disclosure of private information,
and impersonation attacks. In the following sections we
describe the i>clicker system, outline discovered
vulnerabilities, detail methodologies and steps taken to exploit

these vulnerabilities, present possible solutions, and offer
suggestions as to how to the i>clicker system can be used
such that assets at risk are minimized.

II. ANALYZED SYSTEM

The i>clicker audience response system consists of a set of RF
remotes used by students to enter responses and an RF base
station used by instructors to capture and record responses. A
single unique ID stored on each remote allows the base station
to distinguish the source of a given response. To avoid
interference between base stations when multiple units are
used in close proximity - the i>clicker system allows the use
of 16 different channels. Instructors and students configure
their hardware to a specific channel by means of a pairing
process.

Typically, the i>clicker system is used alongside a course
management system (CMS) such as Blackboard, Moodle, or
Sakai. Students register their i>clickers' unique ID on the
CMS to bind their clickers to their CMS accounts. Instructor
can then upload polling session data to the CMS and link
responses to a specific student’s grade set.

Assets placed at risk by incorporating the i>clicker system in a
classroom (and potentially as part of a course marking
scheme) are primarily the CIA (Confidentiality, Integrity, and
Availability) properties of student responses (and their
corresponding grades).

III. RELATED WORK

During the course of this project we found one instance online
of others attempting to reverse engineer the i>clicker. The
individuals managed to disassemble the i>clicker remote and
hook it up to their PC. Using software tools they were able to
successfully dump the memory contents and attempted to
analyze parts of the code (tracing it by hand). This
information provided us with an initial starting point to build
upon to in order achieve further exploits of the system. Our

Security Analysis of the i>clicker Audience
Response System

December 7, 2010

Derek Gourlay, Yik Lam Sit, Yuan Sunarto, Tim Wang

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada

<derekgourlay@gmail.com, cyber_dragon85@hotmail.com, yuan_hidris@hotmail.com, twji1010@gmail.com>

T

EECE 412 Term Project Report

2

work differs in a few matters: the first being that the other
individual’s work was not verifiable as they did not present a
working demo of any potentially developed exploits. As well
information obtained during our analysis seemed to differ
from theirs. Furthermore our analysis of the i>clicker
highlights topics of concern with respect to fundamental
security principles and presents possible solutions to
vulnerabilities found.

IV. DISCOVERED VULNERABILITIES

Three major categories of vulnerabilities were discovered
within the i>clicker audience response system, exploitation of
which could lead to:

 Disclosure of private information
 Impersonation (ID spoofing)
 Service disruption

A. Disclosure of Private Information

Responses sent by students are often considered to be
confidential (even more so when utilizing the “anonymous
polling” feature built into the i>clicker software suite). Our
experiments showed, however, that a base station tuned to the
same frequency as another base station will indiscriminately
read responses sent over the air. This appears to be a result of
the fact that the pairing sequence between a clicker and given
base station does not include any means of authentication.
While at the time of development of the i>clicker it may have
been assumed that students would not have explicit access to
their own base station, a common practice amongst designers
of secure systems is to continuously Question Assumptions:
during which one should re-examining all assumptions made
about threat agents and the environment of a system. During
the course of this project acquiring an i>clicker base station
was as trivial as sending a few polite emails to our university’s
center for learning technologies.

However, direct access to an i>clicker base station is not
necessarily needed to intercept and decode i>clicker wireless
traffic. The i>clicker operates at approximately 915MHz.
The specific frequencies for each particular channel are
outlined in Table I – Base Station Frequencies [2]. Upon
disassembly of an i>clicker remote it was discovered that a
common wireless module, the Semtec XE1203F ISM band RF

transceiver, was used to enable RF communication. It is
theorized that one could develop a device based upon the
XE1203F module that could intercept and decode wireless
i>clicker traffic. The process of reverse engineering i>clicker
wireless transmissions is not further addressed during the
course of this analysis; however, as a general guide it is
offered that one could attempt to look for a known clicker ID
accounting for obfuscations before transmission outlined in
Section C – Service Disruption.

B. Impersonation (ID Spoofing)

Each i>clicker remote is identified by a unique 4-byte ID. It
was our initial assumption that this ID would be stored
within a non-volatile memory location of the remote. Upon
disassembling a remote this assumption was confirmed as it
was discovered it is possible to use an AVR Mk-II, an in-
system programmer (ISP), to extract content from the
onboard ATMega8 microcontroller as well as to reprogram
it. This was all possible because the microcontroller's feature
that prevents dumping program memory and EEPROM
content, called the lock bits, had not been enabled. The
process of connecting our programmer was eased by the fact
that the ISP port to the onboard microprocessor was directly
accessible via the i>clicker PCB (to which we soldered 6
header pins as shown in Fig. 1). The first 3 bytes of the
remote's unique 4 byte ID was found stored at address 0x00
to 0x02 in the EEPROM (as illustrated in Fig. 2). The 4th
byte of any given ID is directly calculated by taking the
XOR of the first 3 bytes. Modifying the 3 byte value stored
in EEPROM changes the ID a remote transmits to a base
station. The process of impersonating another remote,
hereby referred to as ID spoofing, is implemented by writing
a new set of 3 bytes to the EEPROM corresponding to the
remote to be copied.

The ability to spoof another remote’s ID has two major
consequences. The first consequence being that one could
override and change any given answers by another remote,
thereby reducing the integrity of any collected responses. A
second more serious consequence is the fact that ID
spoofing allows an attacker to hijack control of an i>clicker
session. The i>clicker software suite allows a single remote
to be designated as an instructor remote – allowing this
remote to be used to start / stop polling sessions, hide /

TABLE I
BASE STATION FREQUENCIES

Channel Frequency Channel Frequency
AA 917.0 MHz CA 922.0 MHz
AB 913.0 MHz CB 923.0 MHz
AC 914.0 MHz CC 907.0 MHz
AD 915.0 MHz CD 908.0 MHz
BA 916.0 MHz DA 905.5 MHz
BB 919.0 MHz DB 909.0 MHz
BC 920.0 MHz DC 911.0 MHz
BD 921.0 MHz DD 910.0 MHz

Fig. 1. Header pins soldered to ISP port

EECE 412 Term Project Report

3

display answers, and even control navigation of PowerPoint
presentation slides. Given the ID of the instructor remote an
individual could reprogram their remote to duplicate it and
acquire the same functionality. Acquisition of an instructor’s
remote ID can be achieved in one of two fashions: with
physical access to the remote one simply needs to read the
ID off the attached labeling, without physical access it is
possible to use a secondary base station to record any
wireless i>clicker traffic (as highlighted in Section A) from
which the ID can be located.

V. SERVICE DISRUPTION

Disruption of the i>clicker polling service was accomplished
by means of flooding a polling session with fake clicker
responses. The i>clicker receiver can “process up to 1500
votes and accepts up to 750 per second” [3]. By modifying
the firmware upon a remote it was possible to quickly exceed
this limit. In order to achieve this it was necessary, to an
extent, to reverse engineer the i>clicker firmware.

The reverse engineering process was accomplished by initially
developing an i>clicker development platform to work upon
(as depicted in Fig. 3). By means of our AVR MK-II
programmer we were able to dump the program memory
contents of the i>clicker remote to a hex file which was then
decompiled into assembly using the freely available AVR
Studio software suite. With use of common electronic bench

top tools, such as multimeters and digital logic probes, we
were able to determine that the buttons of an i>clicker remote
are attached to PINC of the onboard ATMega8
microcontroller.

In order to achieve the goal of simulating fake clicker
resposnes it was necessary to locate two critical code
segments (amongst the roughly 2000 lines of assembly
acquired from decompilation). First it was necessary to locate
the code segment in which button presses of the remote are
registered and read within the software. Modifying this code
would allow us to simulate button presses upon the remote.
The second critical code segment to be located was the point
at which a clicker’s ID is read from the known location in
EEPROM memory. By referencing the microcontroller’s
datasheet [4] we were able to locate the memory address of
pertinent special function registers – namely the PINC data
register and the EEPROM data register (EEDR). By
searching for these memory addresses in the acquired
assembly code and tracing through code execution using the
AVR studio debugging tools, we were able to locate both of
the desired critical code segments.

With the critical code segments located, we began to modify
the i>clicker’s firmware by writing a series of patches to inject
code that implements our desired functionality. We modified
the firmware in a fashion such that when a button is held
down the subroutine responsible for reading button presses
alternates between registering a button press and a button
release. While at first our attempts to simulate rapid button
presses was unsuccessful it was later determined that the
i>clicker firmware implments a form of software debouncing
explicitly to avoid registering multiple button presses
mistakenly). The debouncing subroutines of the firmware
appeared to utilize timer 0 of the ATMega microcontroller for
timing (as did the flashing LED indicators upon the remote).
By adjusting the timer0 prescaler we were able to significantly
increase the rate at which button presses would be registered.

Fig. 3. i>clicker Development Platform

Fig. 4. i>clicker Remote ID Obfuscation

INTEL HEX FILE FORMAT

:100000000D92FC0000000000000000000000000055

Fig. 2. Sample Hex File Dump

EECE 412 Term Project Report

4

With the ability to rapidly simulate button presses upon a
remote the only remaining factor required to flood a system
with fake responses was the ability to generate a new remote
ID upon each answer sent. By tracing through the located
subroutines that loaded a clicker’s unique ID from the
EEPROM we were able to locate the address in program
memory at which each byte of the ID was stored (and later
read from upon transmitting a response). Generating a new
ID was as simple as incrementing the byte values stored at
each of these addresses each time a response was to be
transmitted.

As mentioned previously the first 3 bytes of an i>clicker’s ID
XOR to produce the 4th byte. Initially we were concerned that
by simply incrememting the byte values we would not
produce a valid ID. This did not appear to be a problem,
however, as all responses transmited were sucessfully
received by an i>clicker base station. Investigation into this
matter lead to the discovery that a remote’s ID is transformed
through an obfustcation process before transmission (as
outlined in Fig. 4). Furthermore, the 4th byte of an original
i>clicker remote’s ID is never used. Our only conclusion as to
why this process occurs was an attempt at Security through
Obscurity. Discovery of this process lead to the ability to not
only be able to transmit responses from randomly generated
IDs but also to programatically specify the IDs to use. As an
aside, we were also able to modify the firmware to allow one
to change the ID a remote transmits with each answer on the
fly by entering a new ID one nibble at a time into the buttons
of the i>clicker.

VI. PRESENTED SOLUTIONS

The main assets placed at risk when using the i>clicker
audience response system, as mentioned previously, are the
CIA properties of student responses and their associated
grades. In order to mitigate these risks we present a series of
possible solutions for the i>clicker system and ways in which
it should be used:

As shown, the i>clicker system lacks the security mechanisms
required to ensure the authenticity of a message. The system is
vulnerable to deception attacks as a result. In our experiments
we were able to deceive the i>clicker base station in regards to
the origin of a response by falsifying a remote’s ID, this lead
to ID spoofing attacks as well as being able to flood a base
station unit with fake responses. One possible solution to this
problem is to obtain a list of remotes that are expected to
participate in a poll beforehand. This can be easily done when
the i>clicker system is used with a CMS. Another benefit of
registering the clickers before a poll is that the system no
longer needs to be concerned with interference with another
polling session using the same frequency because each base
station knows its intended participants. The system could also
implement a one-way authentication scheme to prevent
spoofed responses. A possible protocol is as follows:

Each remote has an embedded asymmetric crypto-processor.
Students first register the public keys of their remotes in their
CMS account. Before a polling session, the base station
obtains a list of the participants’ public keys. During the poll it
broadcasts challenges, which the remotes use to generate
responses containing the concatenation of the answer and the
challenge, signed by the private key inside the remotes. To
prevent traffic eavesdropping and allow secure response
acknowledgement from the base station, it is then necessary to
implement two-way authentication. To do that, the remotes
need to obtain the public key of the base station before a poll.
This could be achieved through a process in which students
must attach their remote to a base station unit at the start of
each semester. This process also has the added benefit in that
a professor may revocate a certificate suspected of being
compromised (requiring students to obtain a new certificate
thereafter).

As many of the findings of this analysis were made possible
by the ability to dump program memory and EEPROM
contents of an i>clicker remote it is suggested that physical
tamper resistance mechanisms be put in place as well. The
simplest mechanism would be to secure the firmware in
remotes by disabling the extraction of code and data. This
could be achieved by setting the lock bits after programming
each remote. Adopting a Defense in Layers approach,
attempts to reverse engineer proprietary firmware could be
hampered by setting circuitry and onboard components of a
remote in an epoxy-based potting compound to seal against
tampering attempts as well.

It is noted that the above proposed counter measures may
impact the ease of use of the i>clicker system. Instructors
would need to obtain a list of remotes before a poll. As well
the cost of the system may also be affected by including
embedded crypto-processors and utilizing epoxy based
compounds as tamper resistance mechanisms. As a result we
acknowledge that the proposed approaches may not be
economically or even socially practical to implement. In this
case, the users of the i>clicker audience response system
should be made aware of the limitation of the system and
adjust their use accordingly.

As a general guiding principle, if the confidentiality of student
responses is valued it is suggested that institutions tightly
regulate and restrict the distribution of base station units. As
outlined previously, failure to do so can result in students
being able to easily intercept and record wireless i>clicker
traffic with ease. Furthermore, it is suggested that the
i>clicker, with its current security flaws, is sufficient to
encourage attendance, class participation and active learning.
Instructors should realize, however, that it is not wise to use
the i>clicker for an exam or pop quiz, for example, in which
the integrity of responses directly affects a student’s grade.

EECE 412 Term Project Report

5

VII. CONCLUSION

In this study, we analyzed the operation of the i>clicker
audience response system and determined that the RF
communication used by the system is inherently insecure. We
were able develop working exploits that lead to disclosure of
private information, impersonation (ID spoofing), and service
disruption. The findings in this paper are significant due to the
fact that the i>clicker is a widely deployed system and its
users often incorrectly assume that its communication are free
from attacks. The proposed solution to highlighted problems
included the adoption of embedded crypto-processors,
implementation of tamper resistance mechanisms, locking
access to proprietary firmware by means of microcontroller
lock bits, implementation of an authentication scheme, and
educating users in how to safely use the i>clicker system as to
mitigate risks to assets. The findings within this paper could
very well apply to similar audience response products.

VIII. REFERENCES

[1] i>clicker. Who Uses the i>clicker? i>clicker Corporate
Web Site. [Online] [Cited: 12 7, 2010.]
http://www.i>clicker.com/dnn/Abouti>clicker/WhoUsesi>clic
ker/tabid/147/Default.aspx.

[2]. Kramer, Doug. EMC Test Report. Lincoln : Nebraska
Center for Excellence in Electronics, 2006. p. 6, FCC Test
Report. Test Report No. R032806-01-01.

[3] FAQs. i>clicker Corporate Website. [Online] [Cited: 12
06, 2010.]
http://www.i>clicker.com/dnn/Support/FAQs/tabid/179/Defau
lt.aspx.

[4] Atmel. Atmega8/L Datasheet. [Online] [Cited: 12 6,
2010.]
http://www.atmel.com/dyn/resources/prod_documents/doc248
6.pdf. Rev.2486X–AVR–06/10.

